REFINEMENTS OF THE GERRETSEN INEQUALITY

MIHALY BENCZE AND MARIUS DRAGAN

ABSTRACT. Gerretsen inequality states that in a triangle the sum of
squares of the sides is less or equal than a linear combination of the
squares of R and r, where R is the radius of the circumscribed circle
and r is the radius of the inscribed circle. The purpose of this article is to
find a chain of inequalities which represent refinements of the Gerretsen
inequality. In the chain of the inequalities are included rational functions
of R and r and the square root of a fourth degree polynomial in R and
r.

1. INTRODUCTION

Let ABC be a triangle. We shall denote a = BC, b = AC, ¢ = AB,

at+b+ec . . . . .
s = ———— the semiperimeter, R the radius of the circumscribed circle

and r the radius of the inscribed circle.

In [6] J.C. Gerretsen proved that in any triangle ABC' the following in-
equality a? + b? + ¢? < 8R? + 472 holds.

In the paper [11] was studied the following problem: Find the best con-
stants a, 8,7 € R and S > 0 such that the following inequality holds

a® +b> 4+ < aR? —i—ﬁRr—i—'yrQ.

In [10] L. Panaitopol proved that if 5 = 0 then o = 8 and v = 4 are the
best constants for which the above inequality holds.

In [11] was proved that the constants & = 8, = 0 and v = 4 are the best
constants for which the above inequality holds. In other words it was proved
that the constants in the inequality of Gerretesen are the best constants.

This means that if «, 8 and ~ are real numbers with 8 > 0 and with the
property that the inequality a? + b2+ c? < aR? + BRr 4 ~yr? is true in every
triangle ABC, then we have that the inequality 8R2+4r? < aR?>+SRr+~r?
is true in every triangle ABC.

In [4] W.J. Blundon proposed the following inequality

s> — (2R? + 10Rr — )| < 2(R — 2r)\/R(R — 2r) .

In [5] W.J. Blundon gave a proof of the above inequality. In the following
we shall refer to the preceding inequality as the Blundon inequality.

Also in [7] A. Makovski gives another solution to Blundon’s inequality.

In [11] was proved the inequality

4 t4
22 < SOBR Y

S R+ (1= 16)2 for each t € [—2,6]. (1.1)
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If we take in (1.1) t = 6, we obtain the inequality

36(4R* + 3r)
2 2 2

R g R A 1.2
¢ © = T18R2 — 52 (12)

Inequality

8(27R* + 2r* + 8Rr3)
27TR2 — 8r2

was proved in [1] by A. Bager. It represents an improvement of the inequality

5 9 o _ (4R+7)(4R%* — 3Rr + 2r?)
b < . 14
a”+b°+c" < - (1.4)
One can easily to prove that (1.2) represent an improvement of (1.3) (see
Theorem 2.4). Also inequality (1.4) represent an improvement of the in-
72R*
ORZ — 42 proposed by 1.V. Maftei to ” Arhimede
International Symposium of Pure and Applied Mathematics 2008” and solve
in [2] by D. Baitan.
Consider the function f:[—2,4+00) - R
36(8R* + tr*
f (t) = 2( ) 2"
36R% 4 (t — 16)r
In [11] was proved that f is decreasing. It results that f(6) < f(1) < f(0) <
f(=1) < F(-2).

The above chain of inequalities may be written as follows
36(4R* 4 3r) - 8(27R* + 2r* + 8Rr3)

A+ +<

(1.3)

equality a® + b% + ¢ <

(1.5)

A+ +E<

— 18R? —5r2 — 27R?2 — 82

(4R +7)(4R? — 3Rr + 2r?) 72R* ) 9
< < < 4
= 9R —r S Rz g2 SO AT

which prove that the inequality (1.2) is the best from this chain.
Note that the above chain of inequalities contains inequalities (1.2), (1.3)
and (1.4).

2. MAIN RESULTS
In the following we will determine the constants «, 5,7, A such that the
inequality
4 4
2 2, 2 _ O+ Pr 2 2

b < — <8R 4 2.1
@ +C_7R2+A7“2_ A 1)
to be true in any ABC' triangle and the inequality
4 4
b < -
@ hbhes vYR? + Ar?
to be the best of this type. We denote u = %, v =

may be written as:

2>

b=

=@

. Inequality (1.5)

4 4

9 9 o _ uR*4tr
b <
“Ertes R? + vr?
If we consider the case of isosceles triangle with the sidesa =0,b=c=1

< 8R? + 412, (2.2)

1
we have that R = 7= 0. We replace in (2.2) and obtain v = 8.
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If we consider the case of equilateral triangle, from (2.2) we obtain that
t—16

v=—
The inequality (2.2) may be written equivalent as

36 (8R* + trt
2l < ( +T)

2 2
< R (162 S A (2.3)

R
The right side of inequality (2.3) after we replace with z = — may be written
as "
7224 + 9t )
—— <2 1
322 1¢-16 - T
and after we perform some calculation we obtain

(2t +4) (—2® +4)
36x2 +t— 16
If we take in (2.4) z — oo we obtain ¢ > —2.
In [11] was proved that the function f defined by (1.5) is decreasing and
a? +b% +c? < f(t) < 8R? + 4r? for every t € [~2,6].
We propose to find the greatest ty € (6,00) for which the above inequality
holds in any triangle.

<0 for each z > 2. (2.4)

Theorem 2.1. In any ABC triangle the following chain of inequalities is
true:

36 (SR* + tr)
2 2 2
R4t <
e S R (= 16) 72

where xq is the unique positive root of the equation:
1824 — 8223 — 42® — 32 — 2 =0,
xo ~ 4,61269 and F is the function F : (2,400) — R,

 722%+722°% — 21627 — 602440 — (722° +1442% — 362 — 72) Va2 — 2
B 122 + 25

< 8R* + 4%, for eacht € [~2,to] (2.5)

F(z)

and tyg = F(xg) ~ 6.06944.

Proof. From the equality
a2+b2+02:2(32—r2—4Rr)

the left side of the inequality (2.5) may be written as

18 (8R* + tr?)

2<r?4+4R .
S B Ty T

From Theorem Blundon we have

s> <2R? + 10Rr — r? + 2\/R(R — 2r)*.

. It results that to find the best real number for which the

==

We denote xz =
inequality (2.6)

—

s true (since it is known that the right side of inequality
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Blundon is the best of the type s> < f(R,r) where f (R,r) is an homoge-
neous function). It will be sufficient to find the greatest real number ¢ for
which the following inequality is true.

18 (8R* + tr?)
2R? 4+ 10Rr — 12 4 2/ —or) <r? 44 2.
R*+10Rr —r*+2y/R(R—2r)" <r°+ Rr+36R2—(16—t)7"2’ (2.7)

inequality (2.7) may be written as

9 (82* +1)

2 3

3w -1+ ow(z—2)P3< 0 Y 2.8
TAdr -l a2 < see s (2:8)

After performing some calculation we obtain

7224 — (3622 —16) (2% + 32— 1) — (3622 — 16 —2)3
< a*— (36 ) (= z—1)— (36 JRVEAC: ) 2.9)

B 22 + 3z — 104+ /2 (z — 2)°

If we take x = 2 the inequality (2.8) becomes equality in the case of equi-
lateral triangle. We consider = # 2.
The inequality (2.8) after dividing by = — 2 becomes

_ 36z — 362? — 20z + 8 — (362 — 16) \/x (z — 2)

r+5+z(x—2)
for each = > 2.

We observe that the right side of inequality (2.10) is after use the conju-
gate and rationalize just the function F' from statement.
From the inequality (2.10) it follows that the best real number is the mini-
mum of the function on (2, +00) interval.

After we will calculate F’ we obtain:

F'(x) =

(2.10)

1
2
(;U—|-5+\/$2—2w) Va2 =2z

| Va? =20 (64827 - 360z~ 108) — 64827 + 10080%+ 108z —72|  (2.11)

The equation F’ (x) = 0 may be written equivalent as:
(22 — 22) (1827 — 102 — 3)” = (182 — 282 — 3w + 2)°
or
1824 — 8223 — 42® — 3z —2=0. (2.12)

From Descartes theorem it follows that the numbers of positive roots of
equation (2.12) is less than or equal to 1.
We consider the polynomial function

g (z) = 182" — 8223 — 422 — 32 — 2.

Since ¢ (4) g (5) < 0 it follows that equation g (z) = 0 has a unique root
in (4,5) interval. But since F'(4) < 0 and F'(5) > 0 it follows that zg
is a minimum point of function F' on (2,+o00) interval. It result that the
minimum of function F' on (2, 4o00) interval is tg = F' (xp). In conclusion

36 (SR* + tr)
2 2 2
24t <
e S R L (= 16) 72

for each t € [—2, 0] .
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We consider the function h : [-2,t)] = R
36 (t + 8xz*
nit) = SolE 8
t+ 3622 — 16
we have
_ —288 (22 —4) (22 — 3)
© (t+ 3632 —16)°
It results that h is a decreasing function on [—2,tg]. So, we have h (ty) <
h(6) <h(t) <h(-2).
Finally we have the best chain of inequalities
2R < 36 (8R* + tor?) - 36 (4R* + 3r)
36R2 + (fo — 16)r2 = 18R? — 52
36 (8R* + tr)
<8R+ 4r°
SSeRI(—16)2 o T

K ()

for each t € [—2,t0].

for each t € [-2,6].
In the following we give an irrational refinement of Gerretsen theorem.
For this we find the best real numbers «, £, such that the inequality

a? + % + 2 < v/aR* + BR?*r2 4 41t < 8R? + 4r? (2.13)
is true in any ABC triangle and the inequality
a? + % + 2 < /aR4 + BR?*r2 4 yrd
is the best of this type.

In the case of the isosceles triangle with the sidesa =b=1,¢=0, R = %,
r =0, from (2.13) we obtain
a = 64. (2.14)
In the case of equilateral triangle from (2.13) we have
%\/m =3
from where we obtain
4B + v = 272. (2.15)

From (2.13), (2.14) and (2.15) it follows that:
a? + % + 2 < /64R* + BR2r2 4 (272 — 46) r* < 8R? +4r2.  (2.16)

R
We denote x = —. From the inequality (2.16) it follows that
T

64z + Ba? + 272 — 48 < 64z + 6422 + 16
or in an equivalent form
272 — 4
ﬁ+7725 < 64 for each =z > 2.
T

If we take x — oo we obtain 8 < 64.

In the following we will find the best real number 8 < 64 for which the
inequality a® +b%+ ¢ < \/64R* + BR2r2 4 (272 — 4/3) r* is the best of this
type. O
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Theorem 2.2. In any ABC triangle the following inequality is true
a? +b% 4+ 2 < \/64R* + BR2r2 4 (272 — 46) r* < 8R? +4r%  (2.17)

for each B € [Py, 64], where By = f(xo) and xo is an unique real positive root
of the equation

4a° — 5ot — 8223 — 16422 — 142 — 4 = 0, = ~ 5.91016
where function f is defined by f : (2,4+00) — R,
2w (z—2) (2% + 3z — 1) — 22° —4a® 4+ 11z + 8
T+ 2

[ ()
and By ~ 2.16151.
Proof. From the identity
a’ +b*+c*=2(s> —r? —4Rr)
the left side of the inequality (2.17) becomes
2 (s —r? — 4Rr) < \/64R* + BR2r2 + (272 — 48) r*. (2.18)
From the Theorem Blundon we have

52 <2R*+10Rr —r? + 24/ R (R — 2r)>.

It follows that to find the best real number 8 < 64 for which the inequality
(2.18) is true it will be sufficient to find the best real number g < 64 for
which the following inequality is true:

2 <2R2+6Rr—2r2+2\/R (R—2r)3> <\/64R*+BR2r24+(272—48) r.

(2.19)

The inequality (2.19) may be written in an equivalent form as

2 _ 9\3 4 /6 ) 68_16
z*+3x—1+\/z(z—2) g\/4m +Ex + T (2.20)

After perform some calculation the inequality (2.20) may be written as
z(z—2) (z* + 32— 1) +x(x—2)° 32+ Tz +8
T+ 2

B> ? (2.21)

for each x > 2.
If we consider the function from the statement from (2.21) it follows that
B > f(x) for each x > 2. So the best real number which we find is the

maximum of the function f on the (2,+o00) interval, fp = max f(z).
2€(2,400)
We have:
1
!/
xTr) =
f (@) (x +2)Va? -2z

4ot 1207 — 207 - 420 + 4 - (42° + 1627 + 160 — 14) Va2 — 20|
The equation f’(x) = 0 is equivalent with:
(23:4 + 62° — 22 — 21z + 2)2 = (2&03 + 822 + 8z — 7)2 (3:2 — 293)

or
425 — 5rt — 8223 — 1642 — 142 — 4 = 0. (2.22)



Refinements of the Gerretsen inequality 7

Since we have just one change of sign of the coefficients of the equation
(2.22), from the Descartes Theorem it follows that the equation (2.22) has
at most a positive root.

We consider the polynomial function

g (z) = 425 — 5ot — 8223 — 16422 — 14z — 4.

Since ¢ (5) - g (6) < 0 it follows that z¢ € (5,6) is the only positive root of
the equation (2.22). But since f'(5) > 0 and f’ (6) < 0 it follows that x¢ is
a maximum point of f. O

Remark 2.1. We observe that § = 35 is the best natural number for which
the inequality (2.17) is true. So in any ABC triangle the following inequality
is true:

a? + b2 + 2 < V64RY + 35R2r2 + 13204 < 8R% + 472

Theorem 2.3. In any ABC triangle the following chain of inequalities is
true:

a? + % + 2 < /64R* + BoR2r2 + (272 — 48g) 4
8 (27R* + 2r* + 8Rr®)

< V64RY £ 35R2r2 + 13274 <

27R? — 82
(4R+7) (4R* —3Rr+2r?) _ 36 (4R*+r*) _ 36 (8R* +1%)
< < <
- 2R —r = 18R?2—Tr? ~ 36R%—15r2
72R 5 5
<—5 <
< opr gz SOR A

where [y € (34.49;34.58) is the positive real number from Theorem 2.2.

(4R +r)(4R? — 3Rr +2r%) _ 36(4R" + 1)
2R —r ~ 18R2—1r2
alent with (z — 2)(222% — 48z + 11) > 0 for each z > 2 inequality which is
true since the roots of equation 2222 — 48z + 11 = 0 are lower than 2.
It remain to prove that

V64RY 4 BoR2r? + (272 — 48)r* < v/64R* + 35R2r2 + 1322
8(27R* + 2r* 4 8Rr3
- 2TR2 — 8r2

the rest of inequalities follows from Theorem 2.2 and from introductive part.
2

R
To prove the left side of inequality (2.23), let v = — and consider the
r
function & : [y, 64] — R, h(B) = r2\/64u? + Bu + 272 — 43. Note that
B r2 (u—4)
24/64u? + Bu + 272 — 48
It results that h is an increasing function. We have h(8y) < h(5) for each
8 € B, 64]. So, h(fo) < h(35).
The left side of inequality (2.23) may be written as
8(2721 + 8z +2)
2722 — 8

Proof. The inequality is equiv-

(2.23)

>0

h'(B)

V6424 + 3522 + 132 <
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for each x > 2 or after performing some calculation
21332° 4 27648 — 78292z + 5888027 + 2048z — 81192 > 0
for each > 2 or
(z —2)(21332° + 319142t — 144642 — 2892822 + 1024z + 4096) > 0

for each > 2, inequality which is true since

213325 + 31914z — 1446423 — 2892822 + 10242 + 4096 = 213322 (23 — 8) +

723223 (x — 2) +29662% (2% — 4) +217162* + 10242 + 4096 > 0 for each z > 2.
In the following we use the notation:

36(4R*4 3r4
U= v64R* + 35R2r2 + 13271, V = 15332—572)’
36(8R* + tor?)
36R2 + (tg — 16)r2’
— 8(27R* +2r* +8Rr%) \/1561 +81/39544
- 2TR? — 812 0= 90
Ag = 737284608t —1296 50, By = —64t2+4352tg—73984-+115289—720t0,

— Bo++/ B§—4A000

Co= —256t3-2176t¢+17408—Bot2+32B0t0—256 80, o = .
0
where ty and By was defined in Theorem 2.1 and Theorem 2.2. O

S = \/64R* + BoR?r? + (272 — 4Bo)rt, T =

Theorem 2.4. In any ABC' triangle the following chains of inequalities is
true:

R
i) A2+ +E<S<USVIWif—>yporad®+0?+2<T<V<
T
, R
U§W2f2§7<70;
- 2 2 2 -R 2 2 2
i) a®+ b+ <S<T<VIWif—>60yora*+b"+c*<T<S<
T
, R
U<SWif2<—< 6.
T

Proof. 1) First we shall prove that V < W for every ABC' triangle or

36(4z* + 3) - 8(27z* + 8z + 2)
1822 -5 — 2722 — 8

or after perform some calculation 4(z —2) (1823 + 32422 — 92— 98) > 0 which
is true for each z > 2.

R
In the following we search the values of — for which U <V or
r

36(4R* + 3r)

6AR + 35R2r2 + 13274 <
VOLR? 4 35R22 4 13204 < 18R% — 512

(2.24)

R2
If we denote —- = y the inequality (2.24) may be written as
r

36(4y> + 3)

64y + 35y + 132 <
Vo4y? + 35y + 132 < 18y — 5

, for each y >4,
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or after perform some calculation (y —4)(180y? — 6244y —2091) > 0 for each

R R
y240ry2’y§. It results that U <V if —>yand U >V if 2 < — < 7.
T

,
The inequality S < U was proved in Theorem 2.3. Also the inequality T' < V/
~ 36(8R*+tr?)

~ 36R%+ (t—16)r

it follows from the monotony of function f : R — R, f()
since f(to) < f(6).

R
ii) We search the values of — for which S < T or
r

- 36(8y% + to)
= 36y 1 to — 16
or after square and perform some calculation (y — 4)(Agy? + Boy + Co) >0

for each y > 4.
Obviously Ag > 0, By < 0, Cy < 0. So, we have y > 98. It results that

V6442 + Boy + 272 — 43,

R ] R
S<Tif —>60y and S >T if 2 < — < 6. O
T r

Remark 2.2. The chain of inequalities from Theorem 2.4 may be complete
after the term W with the rest of inequalities from Theorem 2.3.
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