
REFINEMENTS OF THE GERRETSEN INEQUALITY

MIHÁLY BENCZE AND MARIUS DRĂGAN

Abstract. Gerretsen inequality states that in a triangle the sum of
squares of the sides is less or equal than a linear combination of the
squares of R and r, where R is the radius of the circumscribed circle
and r is the radius of the inscribed circle. The purpose of this article is to
find a chain of inequalities which represent refinements of the Gerretsen
inequality. In the chain of the inequalities are included rational functions
of R and r and the square root of a fourth degree polynomial in R and
r.

1. Introduction

Let ABC be a triangle. We shall denote a = BC, b = AC, c = AB,

s =
a+ b+ c

2
the semiperimeter, R the radius of the circumscribed circle

and r the radius of the inscribed circle.
In [6] J.C. Gerretsen proved that in any triangle ABC the following in-

equality a2 + b2 + c2 ≤ 8R2 + 4r2 holds.
In the paper [11] was studied the following problem: Find the best con-

stants α, β, γ ∈ R and β ≥ 0 such that the following inequality holds

a2 + b2 + c2 ≤ αR2 + βRr + γr2.

In [10] L. Panaitopol proved that if β = 0 then α = 8 and γ = 4 are the
best constants for which the above inequality holds.

In [11] was proved that the constants α = 8, β = 0 and γ = 4 are the best
constants for which the above inequality holds. In other words it was proved
that the constants in the inequality of Gerretesen are the best constants.

This means that if α, β and γ are real numbers with β ≥ 0 and with the
property that the inequality a2 + b2 + c2 ≤ αR2 +βRr+ γr2 is true in every
triangle ABC, then we have that the inequality 8R2+4r2 ≤ αR2+βRr+γr2

is true in every triangle ABC.
In [4] W.J. Blundon proposed the following inequality

|s2 − (2R2 + 10Rr − r2)| ≤ 2(R− 2r)
√
R(R− 2r) .

In [5] W.J. Blundon gave a proof of the above inequality. In the following
we shall refer to the preceding inequality as the Blundon inequality.

Also in [7] A. Makovski gives another solution to Blundon’s inequality.
In [11] was proved the inequality

a2 + b2 + c2 ≤ 36(8R4 + tr4)

36R2 + (t− 16)r2
, for each t ∈ [−2, 6]. (1.1)
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If we take in (1.1) t = 6, we obtain the inequality

a2 + b2 + c2 ≤ 36(4R4 + 3r4)

18R2 − 5r2
. (1.2)

Inequality

a2 + b2 + c2 ≤ 8(27R4 + 2r4 + 8Rr3)

27R2 − 8r2
(1.3)

was proved in [1] by A. Bager. It represents an improvement of the inequality

a2 + b2 + c2 ≤ (4R+ r)(4R2 − 3Rr + 2r2)

2R− r
. (1.4)

One can easily to prove that (1.2) represent an improvement of (1.3) (see
Theorem 2.4). Also inequality (1.4) represent an improvement of the in-

equality a2 + b2 + c2 ≤
72R4

9R2 − 4r2
proposed by I.V. Maftei to ”Arhimede

International Symposium of Pure and Applied Mathematics 2008” and solve
in [2] by D. Băiţan.

Consider the function f : [−2,+∞)→ R

f(t) =
36(8R4 + tr4)

36R2 + (t− 16)r2
. (1.5)

In [11] was proved that f is decreasing. It results that f(6) ≤ f(1) ≤ f(0) ≤
f(−1) ≤ f(−2).
The above chain of inequalities may be written as follows

a2 + b2 + c2 ≤ 36(4R4 + 3r4)

18R2 − 5r2
≤ 8(27R4 + 2r4 + 8Rr3)

27R2 − 8r2

≤ (4R+ r)(4R2 − 3Rr + 2r2)

2R− r
≤ 72R4

9R2 − 4r2
≤ 8R2 + 4r2,

which prove that the inequality (1.2) is the best from this chain.
Note that the above chain of inequalities contains inequalities (1.2), (1.3)
and (1.4).

2. Main results

In the following we will determine the constants α, β, γ,∆ such that the
inequality

a2 + b2 + c2 ≤ αR4 + βr4

γR2 + ∆r2
≤ 8R2 + 4r2 (2.1)

to be true in any ABC triangle and the inequality

a2 + b2 + c2 ≤ αR4 + βr4

γR2 + ∆r2

to be the best of this type. We denote u = α
γ , v = ∆

γ , t = β
γ . Inequality (1.5)

may be written as:

a2 + b2 + c2 ≤ uR4 + tr4

R2 + vr2
≤ 8R2 + 4r2. (2.2)

If we consider the case of isosceles triangle with the sides a = 0, b = c = 1

we have that R =
1

2
, r = 0. We replace in (2.2) and obtain u = 8.
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If we consider the case of equilateral triangle, from (2.2) we obtain that

v =
t− 16

36
.

The inequality (2.2) may be written equivalent as

a2 + b2 + c2 ≤
36
(
8R4 + tr4

)
36R2 + (t− 16) r2

≤ 8R2 + 4r2. (2.3)

The right side of inequality (2.3) after we replace with x =
R

r
may be written

as
72x4 + 9t

32x2 + t− 16
≤ 2x2 + 1

and after we perform some calculation we obtain

(2t+ 4)
(
−x2 + 4

)
36x2 + t− 16

≤ 0 for each x ≥ 2. (2.4)

If we take in (2.4) x→∞ we obtain t ≥ −2.
In [11] was proved that the function f defined by (1.5) is decreasing and

a2 + b2 + c2 ≤ f(t) ≤ 8R2 + 4r2 for every t ∈ [−2, 6].
We propose to find the greatest t0 ∈ (6,∞) for which the above inequality
holds in any triangle.

Theorem 2.1. In any ABC triangle the following chain of inequalities is
true:

a2 + b2 + c2 ≤
36
(
8R4 + tr4

)
36R2 + (t− 16) r2

≤ 8R2 + 4r2, for each t ∈ [−2, t0] (2.5)

where x0 is the unique positive root of the equation:

18x4 − 82x3 − 4x2 − 3x− 2 = 0,

x0 ≈ 4, 61269 and F is the function F : (2,+∞)→ R,

F (x)=
72x4+72x3−216x2−60x+40−(72x3+144x2−36x−72)

√
x2−2x

12x+ 25

and t0 = F (x0) ≈ 6.06944.

Proof. From the equality

a2 + b2 + c2 = 2
(
s2 − r2 − 4Rr

)
the left side of the inequality (2.5) may be written as

s2 ≤ r2 + 4Rr +
18
(
8R4 + tr4

)
36R2 − (16− t) r2

. (2.6)

From Theorem Blundon we have

s2 ≤ 2R2 + 10Rr − r2 + 2

√
R (R− 2r)3.

We denote x =
R

r
. It results that to find the best real number for which the

inequality (2.6) is true (since it is known that the right side of inequality
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Blundon is the best of the type s2 ≤ f (R, r) where f (R, r) is an homoge-
neous function). It will be sufficient to find the greatest real number t for
which the following inequality is true.

2R2 + 10Rr− r2 + 2

√
R (R− 2r)3 ≤ r2 + 4Rr+

18
(
8R4 + tr4

)
36R2 − (16− t) r2

, (2.7)

inequality (2.7) may be written as

x2 + 3x− 1 +

√
x (x− 2)3 ≤

9
(
8x4 + t

)
36x2 + t− 16

. (2.8)

After performing some calculation we obtain

t ≤
72x4−

(
36x2−16

) (
x2 + 3x− 1

)
−
(
36x2− 16

)√
x (x−2)3

x2 + 3x− 10 +
√
x (x− 2)3

. (2.9)

If we take x = 2 the inequality (2.8) becomes equality in the case of equi-
lateral triangle. We consider x 6= 2.
The inequality (2.8) after dividing by x− 2 becomes

t ≤
36x3 − 36x2 − 20x+ 8−

(
36x2 − 16

)√
x (x− 2)

x+ 5 +
√
x (x− 2)

(2.10)

for each x > 2.
We observe that the right side of inequality (2.10) is after use the conju-

gate and rationalize just the function F from statement.
From the inequality (2.10) it follows that the best real number is the mini-
mum of the function on (2,+∞) interval.

After we will calculate F ′ we obtain:

F ′ (x) =
1(

x+ 5 +
√
x2 − 2x

)2√
x2 − 2x

·
[√

x2−2x
(
648x2−360x−108

)
−648x3+ 1008x2+ 108x−72

]
(2.11)

The equation F ′ (x) = 0 may be written equivalent as:(
x2 − 2x

) (
18x2 − 10x− 3

)2
=
(
18x3 − 28x2 − 3x+ 2

)2
or

18x4 − 82x3 − 4x2 − 3x− 2 = 0. (2.12)

From Descartes theorem it follows that the numbers of positive roots of
equation (2.12) is less than or equal to 1.
We consider the polynomial function

g (x) = 18x4 − 82x3 − 4x2 − 3x− 2.

Since g (4) g (5) < 0 it follows that equation g (x) = 0 has a unique root
in (4,5) interval. But since F ′ (4) < 0 and F ′ (5) > 0 it follows that x0

is a minimum point of function F on (2,+∞) interval. It result that the
minimum of function F on (2,+∞) interval is t0 = F (x0). In conclusion

a2 + b2 + c2 ≤
36
(
8R4 + tr4

)
36R2 + (t− 16) r2

for each t ∈ [−2, t0] .
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We consider the function h : [−2, t0]→ R

h (t) =
36
(
t+ 8x4

)
t+ 36x2 − 16

we have

h′ (t) =
−288

(
x2 − 4

) (
x2 − 1

2

)
(t+ 36x2 − 16)2 for each t ∈ [−2, t0] .

It results that h is a decreasing function on [−2, t0]. So, we have h (t0) ≤
h (6) ≤ h (t) ≤ h (−2).

Finally we have the best chain of inequalities

a2 + b2 + c2 ≤
36
(
8R4 + t0r

4
)

36R2 + (t0 − 16)r2
≤

36
(
4R4 + 3r4

)
18R2 − 5r2

≤
36
(
8R4 + tr4

)
36R2 + (t− 16) r2

≤ 8R2 + 4r2

for each t ∈ [−2, 6].
In the following we give an irrational refinement of Gerretsen theorem.

For this we find the best real numbers α, β, γ such that the inequality

a2 + b2 + c2 ≤
√
αR4 + βR2r2 + γr4 ≤ 8R2 + 4r2 (2.13)

is true in any ABC triangle and the inequality

a2 + b2 + c2 ≤
√
αR4 + βR2r2 + γr4

is the best of this type.

In the case of the isosceles triangle with the sides a = b = 1, c = 0, R =
1

2
,

r = 0, from (2.13) we obtain
α = 64. (2.14)

In the case of equilateral triangle from (2.13) we have

1

12

√
1024 + 4β + γ = 3

from where we obtain
4β + γ = 272. (2.15)

From (2.13), (2.14) and (2.15) it follows that:

a2 + b2 + c2 ≤
√

64R4 + βR2r2 + (272− 4β) r4 ≤ 8R2 + 4r2. (2.16)

We denote x =
R

r
. From the inequality (2.16) it follows that

64x4 + βx2 + 272− 4β ≤ 64x4 + 64x2 + 16

or in an equivalent form

β +
272− 4β

x2
≤ 64 for each x ≥ 2.

If we take x→∞ we obtain β ≤ 64.
In the following we will find the best real number β ≤ 64 for which the

inequality a2 + b2 + c2 ≤
√

64R4 + βR2r2 + (272− 4β) r4 is the best of this
type. �
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Theorem 2.2. In any ABC triangle the following inequality is true

a2 + b2 + c2 ≤
√

64R4 + βR2r2 + (272− 4β) r4 ≤ 8R2 + 4r2 (2.17)

for each β ∈ [β0, 64], where β0 = f(x0) and x0 is an unique real positive root
of the equation

4x5 − 5x4 − 82x3 − 164x2 − 14x− 4 = 0, x0 ≈ 5.91016

where function f is defined by f : (2,+∞)→ R,

f (x) =
2
√
x (x− 2)

(
x2 + 3x− 1

)
− 2x3 − 4x2 + 11x+ 8

x+ 2
.

and β0 ≈ 2.16151.

Proof. From the identity

a2 + b2 + c2 = 2
(
s2 − r2 − 4Rr

)
the left side of the inequality (2.17) becomes

2
(
s2 − r2 − 4Rr

)
≤
√

64R4 + βR2r2 + (272− 4β) r4 . (2.18)

From the Theorem Blundon we have

s2 ≤ 2R2 + 10Rr − r2 + 2

√
R (R− 2r)3 .

It follows that to find the best real number β ≤ 64 for which the inequality
(2.18) is true it will be sufficient to find the best real number β ≤ 64 for
which the following inequality is true:

2

(
2R2+6Rr−2r2+2

√
R (R−2r)3

)
≤
√

64R4+βR2r2+(272−4β) r4 .

(2.19)
The inequality (2.19) may be written in an equivalent form as

x2 + 3x− 1 +

√
x (x− 2)3 ≤

√
4x4 +

β

16
x2 +

68− β
4

. (2.20)

After perform some calculation the inequality (2.20) may be written as

β ≥
2
√
x (x− 2)

(
x2 + 3x− 1

)
+ x (x− 2)2 − 3x3 + 7x+ 8

x+ 2
(2.21)

for each x > 2.
If we consider the function from the statement from (2.21) it follows that
β ≥ f (x) for each x ≥ 2. So the best real number which we find is the
maximum of the function f on the (2,+∞) interval, β0 = max

x∈(2,+∞)
f (x).

We have:

f ′ (x) =
1

(x+ 2)
√
x2 − 2x

·
[
4x4 + 12x3 − 2x2 − 42x+ 4−

(
4x3 + 16x2 + 16x− 14

)√
x2 − 2x

]
.

The equation f ′ (x) = 0 is equivalent with:(
2x4 + 6x3 − x2 − 21x+ 2

)2
=
(
2x3 + 8x2 + 8x− 7

)2 (
x2 − 2x

)
or

4x5 − 5x4 − 82x3 − 164x2 − 14x− 4 = 0. (2.22)
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Since we have just one change of sign of the coefficients of the equation
(2.22), from the Descartes Theorem it follows that the equation (2.22) has
at most a positive root.

We consider the polynomial function

g (x) = 4x5 − 5x4 − 82x3 − 164x2 − 14x− 4.

Since g (5) · g (6) < 0 it follows that x0 ∈ (5, 6) is the only positive root of
the equation (2.22). But since f ′ (5) > 0 and f ′ (6) < 0 it follows that x0 is
a maximum point of f . �

Remark 2.1. We observe that β = 35 is the best natural number for which
the inequality (2.17) is true. So in any ABC triangle the following inequality
is true:

a2 + b2 + c2 ≤
√

64R4 + 35R2r2 + 132r4 ≤ 8R2 + 4r2.

Theorem 2.3. In any ABC triangle the following chain of inequalities is
true:

a2 + b2 + c2 ≤
√

64R4 + β0R2r2 + (272− 4β0) r4

≤
√

64R4 + 35R2r2 + 132r4 ≤
8
(
27R4 + 2r4 + 8Rr3

)
27R2 − 8r2

≤
(4R+ r)

(
4R2 − 3Rr + 2r2

)
2R− r

≤
36
(
4R4 + r4

)
18R2 − 7r2

≤
36
(
8R4 + r4

)
36R2 − 15r2

≤ 72R4

9R2 − 4r2
≤ 8R2 + 4r2

where β0 ∈ (34.49; 34.58) is the positive real number from Theorem 2.2.

Proof. The inequality
(4R+ r)(4R2 − 3Rr + 2r2)

2R− r
≤

36(4R4 + r4)

18R2 − 7r2
is equiv-

alent with (x − 2)(22x2 − 48x + 11) ≥ 0 for each x ≥ 2 inequality which is
true since the roots of equation 22x2 − 48x+ 11 = 0 are lower than 2.

It remain to prove that√
64R4 + β0R2r2 + (272− 4β0)r4 ≤

√
64R4 + 35R2r2 + 132r2

≤ 8(27R4 + 2r4 + 8Rr3

27R2 − 8r2
(2.23)

the rest of inequalities follows from Theorem 2.2 and from introductive part.

To prove the left side of inequality (2.23), let u =
R2

r2
and consider the

function h : [β0, 64]→ R, h(β) = r2
√

64u2 + βu+ 272− 4β . Note that

h′(β) =
r2(u− 4)

2
√

64u2 + βu+ 272− 4β
≥ 0.

It results that h is an increasing function. We have h(β0) ≤ h(β) for each
β ∈ [β0, 64]. So, h(β0) ≤ h(35).
The left side of inequality (2.23) may be written as√

64x4 + 35x2 + 132 ≤ 8(27x4 + 8x+ 2)

27x2 − 8
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for each x ≥ 2 or after performing some calculation

2133x6 + 27648− 78292x4 + 58880x2 + 2048x− 81192 ≥ 0

for each x ≥ 2 or

(x− 2)(2133x5 + 31914x4 − 14464x3 − 28928x2 + 1024x+ 4096) ≥ 0

for each x ≥ 2, inequality which is true since
2133x5 + 31914x4 − 14464x3 − 28928x2 + 1024x+ 4096 = 2133x2(x3 − 8) +
7232x3(x−2)+2966x2(x2−4)+21716x4 +1024x+4096 ≥ 0 for each x ≥ 2.

In the following we use the notation:

U=
√

64R4 + 35R2r2 + 132r4, V =
36(4R4+ 3r4)

18R2 − 5r2
,

S =
√

64R4 + β0R2r2 + (272− 4β0)r4, T =
36(8R4 + t0r

4)

36R2 + (t0 − 16)r2
,

W =
8(27R4 + 2r4 + 8Rr3)

27R2 − 8r2
, γ0 =

√
1561 + 8

√
39544

90
A0 = 73728−4608t0−1296β0, B0 = −64t20+4352t0−73984+1152β0−72β0t0,

C0 = −256t20−2176t0+17408−β0t
2
0+32β0t0−256β0, θ0 =

√
−B0+

√
B2

0−4A0C0

2A0
,

where t0 and β0 was defined in Theorem 2.1 and Theorem 2.2. �

Theorem 2.4. In any ABC triangle the following chains of inequalities is
true:

i) a2 + b2 + c2 ≤ S ≤ U ≤ V ≤W if
R

r
≥ γ0 or a2 + b2 + c2 ≤ T ≤ V <

U ≤W if 2 ≤
R

r
< γ0;

ii) a2 + b2 + c2 ≤ S ≤ T ≤ V ≤ W if
R

r
≥ θ0 or a2 + b2 + c2 ≤ T < S ≤

U ≤W if 2 ≤
R

r
< θ0.

Proof. i) First we shall prove that V ≤W for every ABC triangle or

36(4x4 + 3)

18x2 − 5
≤ 8(27x4 + 8x+ 2)

27x2 − 8

or after perform some calculation 4(x−2)(18x3 +324x2−9x−98) ≥ 0 which
is true for each x ≥ 2.

In the following we search the values of
R

r
for which U ≤ V or

√
64R4 + 35R2r2 + 132r4 ≤ 36(4R4 + 3r4)

18R2 − 5r2
. (2.24)

If we denote
R2

r2
= y the inequality (2.24) may be written as

√
64y2 + 35y + 132 ≤ 36(4y2 + 3)

18y − 5
, for each y ≥ 4,



Refinements of the Gerretsen inequality 9

or after perform some calculation (y−4)(180y2−6244y−2091) ≥ 0 for each

y ≥ 4 or y ≥ γ2
0 . It results that U ≤ V if

R

r
≥ γ0 and U > V if 2 ≤

R

r
< γ0.

The inequality S ≤ U was proved in Theorem 2.3. Also the inequality T ≤ V

it follows from the monotony of function f : R→ R, f(t) =
36(8R4 + tr4)

36R2 + (t− 16)r
since f(t0) ≤ f(6).

ii) We search the values of
R

r
for which S ≤ T or√

64y2 + β0y + 272− 4β0 ≤
36(8y2 + t0)

36y + t0 − 16

or after square and perform some calculation (y− 4)(A0y
2 +B0y +C0) ≥ 0

for each y ≥ 4.
Obviously A0 > 0, B0 < 0, C0 < 0. So, we have y ≥ θ2

0. It results that

S ≤ T if
R

r
> θ0 and S > T if 2 ≤

R

r
< θ0. �

Remark 2.2. The chain of inequalities from Theorem 2.4 may be complete
after the term W with the rest of inequalities from Theorem 2.3.
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