
The Blundon theorem in an acute triangle and some
consequences

Mihály Bencze and Marius Drăgan 1

Str. Hărmanului 6, 505600 Săcele-Négyfalu, Jud. Braşov, Romania
E-mail: benczemihaly@yahoo.com

61311 bd. Timişoara Nr. 35, Bl. 0D6, Sc. E, et. 7, Ap. 176, Sect. 6, Bucureşti, Romania
E-mail: marius.dragan2005@yahoo.com

ABSTRACT. The purpose of this article is to give an analoque of Blundon theorem in an acute triangle
and using this result to obtain the best inequality of the type

∑√
b+ c− a

a
≥ f (R, r)

where f is a homogenous function
Let be C (O, r) , C (I, r) two circles such that I ∈ int C (O, r) and OI =

√
R2 − 2Rr.

For any triangle ABC with C (O,R) the circumscrible and C (I, r) the incircle, we denote a = BC,
b = CA, c = AB, s = a+b+c

2 the semiperimeter of triangle and F the area.
The Theorem 2 of Blundon see [[3], p. 615-626] it has in this paper an analoque in an acute triangle by
Theorem 3.
Also the Theorem 4 represent the best improvement of the type

∑√
b+c−a

a ≥ f (R, r), where f(R, r) is

a homogeneous function of the inequality
∑√

b+c−a
a ≥ 3. See [[1], p. 159-165], which is know as the

Rădulescu - Maftei Theorem and which in [1] has 2 solutions one elementary and other based on the
multiplier Lagrange Theorem.

MAIN RESULTS

Lemma 1. In any triangle ABC are true the following equalities
1). a2 + b2 + c2 = 2

(
s2 − r2 − 4Rr

)
2). ab+ bc+ ca = s2 + r2 + 4Rr

3). a2b2 + b2c2 + c2a2 =
(
s2 + r2 + 4Rr

)2 − 16Rrs2

Lemma 2. In any triangle ABC is true the following equality:

∏
cosA =

s2 − r2 − 4Rr − 4R2

4R2

Proof. In the following we will denote x = a2 + b2 + c2. From the cosine theorem it follows that:

∏
cosA =

∏(
b2 + c2 − a2

)
8(
∏

a)2
=

∏(
x− 2a2

)
8(
∏

a)2
=

=
x2 − 2

∑
a2x+ 4

∑
a2b2x− 8(

∏
a)2

8(
∏

a)2
=

s2 − r2 − 4Rr − 4R2

4R2

Theorem 1. In any acute triangle is true the following inequality:

s > 2R+ r

Proof. As in any acute triangle is true the inequality:
∏

cosA > 0 according with Lemma 2 it follows
the inequality from the statement.
Theorem 2. (Blundon). In any triangle ABC is true the following inequality: s1 ≤ s ≤ s2 where
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s1 =

√
2R2 + 10Rr − r2 − 2

√
R (R− 2r)

3 , s2 =

√
2R2 + 10Rr − r2 + 2

√
R (R− 2r)

3

represent the semiperimeter of two issoscels triangle A1B1C1 and A2B2C2 with the sides

a1 = 2

√
R2 − (r − t)

2
, b1 = c1 =

√
2R (R+ r − t)

a2 = 2

√
R2 − (r + t)

2
, b2 = c2 =

√
2R (R+ r + t)

where t = OI =
√
R2 − 2Rr.

Lemma 3. Let A3B3C3 be a triangle with C (O,R) the circumscrible and C (I, r) the incircle and with
the semiperimeter s3 = 2R+ r. Then the sides of triangle A3B3C3 is unique determinated by the
equalities:

a3 = 2R

b3 = R+ r +
√
R2 − 2Rr − r2

c3 = R+ r −
√
R2 − 2Rr − r2

where A3 is a right angle.
Proof. We have the following equalities:

a+ b+ c = 2s

ab+ bc+ ca = s2 + r2 + 4Rr

abc = 4Rrs

or

a+ b+ c = 4R+ 2r

ab+ bc+ ca = 4R2 + 8Rr + 2r2 (1)

abc = 4Rr (2R+ r)

From (1) it follows that a, b, c are the solutions of the equation:

u3 − (4R+ 2r)u2 +
(
4R+ 8Rr + 2r2

)
u− 4Rr (2R+ r) = 0 (2)

The equation (2) may be written as:

(u− 2R)
[
u2 − (2R+ 2r)u+ 4Rr + 2r2

]
= 0

which has the solutions from the statement.
Theorem 3. In any acute triangle with C (O,R) the circumscribed and C (I, r) the inscribed are true
the following inequalities:

s1 ≤ s ≤ s2 if 2 ≤ R

r
<

√
2 + 1

and



s3 ≤ s ≤ s2 if
R

r
≥

√
2 + 1

where s1, s2 are the semiperimeter of two issosceles triangle A1B1C1, A2B2C2 with the sides from
Theorem 2 and s3 is the semiperimeter of the right triangle A3B3C3 from Lemma 3.
Proof. We denote R

r = x. We consider two cases:
Case 1. 2 ≤ x <

√
2 + 1

We will prove that s1 > s3 or in an equivalent form:

2x2 + 10x− 1− 2

√
x (x− 2)

3 − (2x+ 1)
2
= 2

[
−
√
x (x− 2)

3 −
(
x2 − 3x+ 1

)]
> 0

or

−
(
x2 − 3x+ 1

)
>

√
x (x− 2)

3
(3)

But x2 − 3x+ 1 < 0 as x <
√
2 + 1 < 3+

√
5

2 . After squaring in (3) we obtain:(
x2 − 3x+ 1

)2
> x (x− 2)

3 or − x2 + 2x+ 1 > 0 or(√
2− 1− x

)(
x−

(√
2 + 1

))
> 0

inequality which is true. It results that s3 < s1 ≤ s2.
But as s1 ≤ s ≤ s2 and s ≥ s3 it follows that s1 ≤ s ≤ s2.
Case 2a.

√
2 + 1 ≤ x < 3+

√
5

2 or x2 − 3x+ 1 < 0.
We will prove that s1 ≤ s3 or in an equivalent form:

2x2 + 10x− 1− 2

√
x (x− 2)

3
< (2x+ 1)

2 or −
(
x2 − 3x+ 1

)
≤

√
x(x− 2)

3
(4)

After squaring and performing some calculation the inequality (4) may be written as(
x−

(√
2− 1

))(
x−

(√
2 + 1

))
≥ 0

inequality which is true.
We will prove that s3 < s2 or in an equivalent form:

(2x+ 1)
2
< 2x2 + 10x− 1− 2

√
x (x− 2)

3 or x2 − 3x+ 1 <

√
x (x− 1)

3
(5)

The inequality (5) is true as x2 − 3x+ 1 < 0. It results that s1 ≤ s3 < s2. But as s1 ≤ s ≤ s2 and s ≥ s3
it follows that s3 ≤ s ≤ s2.
Case 2.b. x ≥ 3+

√
5

2 or x2 − 3x+ 1 ≥ 0.
We will prove that

s1 < s3 or −
(
x2 − 3x+ 1

)
<

√
x (x− 2)

3

inequality which is true.
We will prove that

s3 < s2 or x2 − 3x+ 1 <

√
x (x− 2)

3

or in an equivalent form [
x−

(√
2− 1

)] [
x−

(√
2 + 1

)]
> 0

It results that s1 < s3 < s2. But as s1 ≤ s ≤ s2 and s ≥ s3 it follows that s3 ≤ s ≤ s2.
It results in the cases 2a and 2b that s3 ≤ s ≤ s2 which is equivalent with the inequality from the
statement.



Lemma 4. In any triangle ABC is true the equalities:
1).

∑
s−a
a = s2+r2−8Rr

4Rr

2).
∑ (s−a)(s−b)

ab = 2R−r
2R

Proof.

∑ s− a

a
=

s
∑

bc− 3abc

abc
=

s
(
s2 + r2 + 4Rr

)
− 12Rr

abc
=

s2 + r2 − 8Rr

4Rr
=

=
∑ (s− a) (s− b)

ab
=

s2 (
∑

a)− 2s
(
s2 + r2 + 4Rr

)
+ 12Rrs

abc
=

2R− r

2R

Theorem 4. (A refinement of Rădulescu - Maftei Theorem). In any triangle ABC is true the following
inequality:

∑√
b+ c− a

a
≥

√
2R− 2

√
R2 − 2Rr − r2

R+ r +
√
R2 − 2Rr − r2

+

√
2R+ 2

√
R2 − 2Rr − r2

R+ r −
√
R2 − 2Rr − r2

+

√
r

R

if R
r ≥

√
2 + 1 or

∑√
b+ c− a

a
≥

√
R− r − d

r
+ 2

√
R+ d

R

if 2 ≤ R
r <

√
2 + 1.

Proof. We denote t =
∑√

s−a
a . By squaring we obtain

t2 =
∑ s− a

a
+ 2

√∑
(s− a) (s− b)

ab
+ 2

√
(s− a) (s− b) (s− c)

abc

From Lemma 4, 1) and 2) it follows that:(
t2 − s2 + r2 − 8Rr

4Rr

)2

= 4

(
2R− r

2R
+ 2

√
r

4R
t

)
We consider the function f : (0,+∞) → R

f (u) = u4 − s2 + r2 − 8Rr

2Rr
u2 − 8

√
r

4R
u+

(
s2 + r2 − 8Rr

4Rr

)2

− 4R− 2r

R

We have f (t) = 0. We will prove that(
s2 + r2 − 8Rr

4Rr

)2

<
4R− 2r

R

or in an equivalent form:

s2 < 8Rr − r2 + 4
√
Rr2 (4R− 2r)

But as s2 ≤ s22. It will be sufficient to prove that

s22 = 2R2 + 10Rr − r2 − 2

√
R (R− 2r)

3
< 8Rr − r2 + 4

√
Rr2 (4R− 2r) (6)

We denote x = R
r . The inequality (6) may be written as:

2x2 + 10x− 1− 2

√
x (x− 2)

3
< 8x− 1 + 4

√
x (4x− 2)

or

x2 + x <

√
x (x− 2)

3
+ 2

√
x (4x− 2) (7)



After squaring the inequality (7) we will obtain:

x4 + 2x3 + x2 < x
(
x3 − 6x2 + 12x− 8

)
+ 16x2 − 8x+ 4x

√
(x− 2)

3
(4x− 2)

or

8x3 − 27x2 + 16x < 4x

√
(x− 2)

3
(4x− 2)

or

8x2 − 27x+ 16 < 4
√
(x3 − 6x2 + 12x− 8) (4x− 2) (8)

If

8x2 − 27x+ 16 ≤ 0

the inequality (8) is true. For 8x2 − 27x+ 16 > 0 we will square (8) and we will obtain:

64x4 + 729x2 + 256− 432x3 + 256x2 − 864x < 64x4 − 416x3 + 960x2 − 896x+ 256

or

16x3 − 25x2 − 32x > 0 or 16x2 − 25x− 32 > 0

But 8x2 − 27x+ 16 > 0. It results that x > 27+
√
217

16 > 25+
√
2673

32 or 16x2 − 2x− 32 > 0.

We denote a2 = s2+r2−8Rr
2Rr , a1 = 8

√
r
4R , a0 = 4R−2r

R −
(

s2+r2−8Rr
4Rr

)2

. The equation f (u) = 0 may be
written as: u4 − a2u

2 − a1u− a0 = 0 with a0, a1, a2 > 0 or 1− a2

u2 − a1

u3 − a0

u4 = 0. But g : (0,+∞) → R,
g (u) = 1− a2

u2 − a1

u3 − a0

u4 is an increasing function. It results that t is the only positive root of equation
f (u) = 0.
It result that if exists a unique continue function u : [s1, s2] → R such that f (u (s)) = 0, (∀) s ∈ [s1, s2] .
From implicite Theorem it follows that u is derivable on interval (s1, s2) , u : [s1, s2] → R which verify
the condition: (

u2 (s)− s2 + r2 − 8Rr

4Rr

)2

= 4

(
2R− r

2R
+ 2

√
r

4R
u (s)

)
, (∀) s ∈ [s1, s2] (9)

After we derivate the equality (9) we will obtain:(
u2 (s)− s2 + r2 − 8Rr

4Rr

)(
u (s)u′ (s)− s

4Rr

)
=

√
r

R
u′ (s) , (∀) s ∈ [s1, s2]

or in an equivalent form:(
u3 (s)− s2 + r2 − 8Rr

4Rr
u (s)−

√
r

R

)
u′ (s) =

s

4Rr

(
u2 (s)− s2 + r2 − 8Rr

4Rr

)
or (

u3 (s)− s2 + r2 − 8Rr

4Rr
u (s)−

√
r

R

)
u′ (s) =

s

4Rr

(
u2 (s)− s2 + r2 − 8Rr

4Rr

)
, (∀) s ∈ [s1, s2]

From:

u2 (s) =
∑ s− a

a
+ 2

∑√
(s− a) (s− b)

ab
≥ s2 + r2 − 8Rr

4Rr
+ 6

3

√
(s− a) (s− b) (s− c)

abc
=

=
s2 + r2 − 8Rr

4Rr
+ 6 3

√
r

4R
, (∀) s ∈ [s1, s2]

it results that:



u3 (s)− s2 + r2 − 8Rr

4Rr
u (s)−

√
r

R
= u (s)

(
u2 (s)− s2 + r2 − 8Rr

4Rr

)
−
√

r

R
≥

√
6 3

√
r

4R
· 6 3

√
r

4R
−

−
√

r

R
=

(
3
√
6− 1

)√
r

R
> 0, (∀) s ∈ [s1, s2]

and u2 (s)− s2+r2−8Rr
4Rr > 0, (∀) s ∈ [s1, s2] . It results that u is an increasing function on interval [s1, s2] .

From Theorem 3 it follows that s1 ≤ s, for 2 ≤ R
r <

√
2 + 1 which implies that u (s1) ≤ u (s) .

Replacing the sides a1, b1, c1 of the A1B1C1 triangle from Theorem 2 we will obtain:

∑√
b+ c− a

a
≥

√
R− r − d

r
+ 2

√
R+ d

R
if 2 ≤ R

r
<

√
2 + 1

From Theorem 3 it follows that s3 ≤ s if R
r ≥

√
2 + 1 which implies that u (s3) ≤ u (s)

By replacing the sides a3, b3, c3 from Lemma 3 it follows that:

∑√
b+ c− a

a
≥

√
2R2 − 2

√
R2 − 2Rr − r2

R+ r +
√
R2 − 2Rr − r2

+

√
2R+ 2

√
R2 − 2Rr − r2

R+ r −
√
R2 − 2Rr − r2

+

√
r

R
if

R

r
≥

√
2 + 1

Lemma 5. In any triangle ABC is true the following inequality:√
2R− 2

√
R2 − 2Rr − r2

R+ r +
√
R2 − 2Rr − r2

+

√
2R+ 2

√
R2 − 2Rr − r2

R+ r −
√
R2 − 2Rr − r2

+

√
r

R
≥ 3 if

R

r
≥

√
2 + 1 (10)

Proof. We denote d2 =
√
x2 − 2x− 1. By squaring the inequality (10) we will obtain:

2

√
(2x− 2d2) (2x+ 2d2)

(x+ 1 + d2) (x+ 1− d2)
+

(2x− 2d2) (x+ 1− d2) + (2x+ 2d2) (x+ 1 + d2)

(x+ 1 + d2) (x+ 1− d2)
≥

(
3− 1√

x

)2

or

2

√
4 (x2 − x2 + 2x+ 1)

x2 + 2x+ 1− x2 + 2x+ 1
+

+
2x2 + 2x− 2xd2 − 2xd2 − 2d2 + 2x2 − 4x− 2 + 2x2 + 2x+ 2xd2 + 2xd2 + 2d2 + 2x2 − 4x− 2

x2 + 2x+ 1− x2 + 2x+ 1
≥

≥ 9 +
1

x
− 6√

x

or

8x2 − 4x− 4

4x+ 2
+ 2

√
2 ≥ 9 +

1

x
− 6√

x

or

2x− 2 + 2
√
2 ≥ 9 +

1

x
− 6√

x

or

2x− 11 + 2
√
2 ≥ 1

x
− 6√

x



or

2x2 +
(
2
√
2− 11

)
x ≥ 1− 6

√
x

or

2x2 +
(
2
√
2− 11

)
x+ 6

√
x− 1 ≥ 0

We consider the function f :
[√

2 + 1,+∞
)
→ R

f (x) = 2x2 +
(
2
√
2− 11

)
x+ 6

√
x− 1

with the derivate

f ′ (x) = 4x+ 2
√
2− 11 +

3√
x
= 4

(
x−

√
2− 1

)
+ 6

√
2− 7 +

3√
x
≥ 0

It results that f is an increasing function on interval
[√

2 + 1,+∞
)

which implies that
f (x) > f

(√
2 + 1

)
.

After performing some calculation we obtain f
(√

2 + 1
)
> 0.

Lemma 6. In any triangle ABC is true the following inequality:√
R− r − d

r
+ 2

√
R+ d

R
≥ 3, if 2 ≤ R

r
≤ 8 (11)

Proof. We denote R
r = x, dx =

√
R(R−2r)

r =
√
x (x− 2). The inequality (11) may be written as:

√
x− 1− dx + 2

√
x+ dx

x
≥ 3

By squaring we will obtain:

4x+ 4dx
x

≥ 9 + x− 1− dx − 6
√

x− 1− dx

or

6
√
x− 1− dx ≥ 8− dx + x− 4x+ 4dx

x
or

6
√
x− 1− dx ≥ 4x− xdx + x2 − 4dx

x
or

6
√
x− 1− dx ≥ (x+ 4) (x− dx)

x
or

36x2 (x− 1− dx) ≥
(
x2 + 8x+ 16

)
2 (x− dx − 1)x

or

2x (x− dx − 1)
(
18x− x2 − 8x− 16

)
≥ 0 and as x− dx − 1 > 0

It will be sufficient to prove that:

x2 − 10x+ 16 ≤ 0 or (x− 2) (x− 8) ≤ 0 or x ≤ 8

Theorem 5. (The inequality Rădulescu-Maftei) In any acute triangle is true the following inequality:



√
b+ c− a

a
+

√
c+ a− b

b
+

√
a+ b− c

c
≥ 3

Proof. It results from Theorem 4, Lemma 5 and 6.
Theorem 6. In any triangle ABC with 2 ≤ R

r ≤ 8 is true the following inequality:√
b+ c− a

a
+

√
c+ a− b

b
+

√
a+ b− c

c
≥ 3

Proof. According with the proof of Theorem 4 it follows that u : [s1, s2] → R is an increasing function.
But s1 ≤ s. It results that u (s) ≥ u (s1) or

∑√
b+ c− a

a
≥

√
R− r − d

r
+ 2

√
R+ d

R
≥ 3

according with Lemma 6.
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