AN WEIGHTED POWER LESSELS-PELLING INEQUALITY

MIHÁLY BENCZE AND MARIUS DRĂGAN

Abstract

Lessels-Pelling inequality states that in a triangle the sum of two angle bisectors and a medians is less or equal than the product between $\sqrt{3}$ and semiperimeter. The purpose of this article is to find a powered option of this inequality with some supplementary condition, for the weights and some chains of inequalities which represent refinements of powered Lessels-Pelling inequality.

1. Introduction

Let $A B C$ be a triangle. We shall denote $a=B C, b=C A, c=A B, s=$ $\frac{a+b+c}{2}$ the semiperimeter, m_{a} the medians from A, w_{b}, w_{c} the bisectors from B and C.

In 1974 J . Garfunkel [1] conjunctured on basis of computer check the following inequality $m_{a}+w_{b}+h_{c} \leq s \sqrt{3}$, where h_{c} represent the altitude from C.

In 1976 C.S. Gardner [1] prove by mean of sequence of elementary transformation and differentiable of a function.

In 1977 G.S. Lessels and M.J. Pelling give in [2] stronger inequality $m_{a}+$ $w_{b}+w_{c} \leq s \sqrt{3}$ using the computer check.

In 1980 B.E. Patuwo, R.S.D. Thomas and Chung-Lie Wang give in [3] a proof of this inequality.

In [4] appear a new proof of C. Tănăsescu.
In 1981 L. Panaitopol [5] find an elementary solution of Lessels-Pelling inequality.

În [6] and [7] M. Drăgan give a simple proof and some refinements of Lessels-Pelling inequality.

2. Main Results

In the following we use the following notation

$$
\begin{align*}
& x=\frac{a}{s}, y=\frac{b}{s}, z=\frac{c}{s}, u=\sqrt{1-y}, v=\sqrt{1-z}, s_{1}=u+v, p_{1}=u \cdot v \\
& E=\sqrt{\frac{2\left(y^{2}+z^{2}\right)-x^{2}}{4}}, s_{2}=\beta u+\gamma v, t=\frac{3 \alpha^{2}-2 \alpha+1}{2} \tag{2.1}
\end{align*}
$$

where α, β, γ are positive numbers such that $(\beta-\gamma)(b-c) \geq 0$ and $\alpha+\beta+\gamma=$ 1.

2010 Mathematics Subject Classification. ????????
Key words and phrases. ??????????????

Lemma 2.1. According with above notation, are true the inequalities:

$$
\begin{array}{r}
\text { i) } \quad E \leq \sqrt{1-\frac{s_{1}^{2}}{2}} \\
\text { ii) } E \leq \sqrt{1-\frac{2}{(1-\alpha)^{2}} s_{2}^{2}}
\end{array}
$$

Proof. i) From (2.1) we have

$$
\begin{aligned}
E & =\sqrt{\frac{2\left(2+u^{4}+v^{4}-2 u^{2}-2 v^{2}\right)-\left(u^{2}+v^{2}\right)^{2}}{4}} \\
& =\sqrt{\frac{2\left[2+\left(u^{2}+v^{2}\right)^{2}-2 p_{1}^{2}-2\left(u^{2}+v^{2}\right)\right]-\left(u^{2}+v^{2}\right)^{2}}{4}} \\
& =\sqrt{\frac{4+2\left(s_{1}^{2}-2 p_{1}\right)^{2}-4 p_{1}^{2}-4\left(s_{1}^{2}-2 p_{1}\right)-\left(s_{1}^{2}-2 p_{1}\right)^{2}}{4}} \\
& =\sqrt{\frac{4+s_{1}^{4}-4 s_{1}^{2}+4 p_{1}\left(2-s_{1}^{2}\right)}{4}} \leq \sqrt{\frac{4-4 s_{1}^{2}+2 s_{1}^{2}}{4}}=\sqrt{1-\frac{s_{1}^{2}}{2}}
\end{aligned}
$$

ii) We have

$$
\begin{equation*}
s_{2}=\beta u+\gamma v \leq \frac{1}{2}(\beta+\gamma)(u+v)=\frac{(1-\alpha) s_{1}}{2} \tag{2.4}
\end{equation*}
$$

since $(\beta-\gamma)(b-c) \geq 0$, it results that $(\beta-\gamma)(u-v) \leq 0$.
From (2.2) and (2.4) it results (2.3).
Theorem 2.1 (The weighted power Lessels-Pelling inequality). In every $A B C$ triangle is true the following inequality

$$
\begin{equation*}
\alpha m_{a}+\beta w_{b}+\gamma w_{c} \leq S \sqrt{t} \tag{2.5}
\end{equation*}
$$

where α, β, γ are positive numbers such that $(\beta-\gamma)(b-c) \geq 0$ and $\alpha+\beta+\gamma=$ 1.

Proof. Since $w_{b} \leq \sqrt{s(s-b)}$ and $w_{c} \leq \sqrt{s(s-c)}$ to prove (2.5) it will be sufficient to prove that

$$
\begin{equation*}
\alpha m_{a}+\beta \sqrt{s(s-b)}+\gamma \sqrt{s(s-c)} \leq s \sqrt{t} \tag{2.6}
\end{equation*}
$$

According (2.1) inequality, (2.6) may be written as

$$
\alpha \sqrt{\frac{2\left(y^{2}+z^{2}\right)-x^{2}}{4}}+\beta \sqrt{1-y}+\gamma \sqrt{1-z} \leq \sqrt{t}
$$

or

$$
\begin{equation*}
\alpha E+S_{2} \leq \sqrt{t} \tag{2.7}
\end{equation*}
$$

From (2.2) and (2.4) we have that

$$
\alpha E+S_{2} \leq \alpha \sqrt{\frac{2-S_{1}^{2}}{2}}+\frac{1-\alpha}{2} S_{1}
$$

It results that to prove (2.7), it will be sufficient to prove that

$$
\begin{equation*}
\alpha \sqrt{\frac{2-S_{1}^{2}}{2}}+\frac{1-\alpha}{2} S_{1} \leq \sqrt{t} \tag{2.8}
\end{equation*}
$$

We note that $S_{1}=\sqrt{1-y}+\sqrt{1-z} \leq \sqrt{2(2-y-z)}=\sqrt{2 x}=\sqrt{\frac{2 \alpha}{S}}<\sqrt{2}$. So, we have $S_{1}<\sqrt{2}$.
We consider the function $f:(0, \sqrt{2}) \rightarrow \mathbb{R}, f\left(S_{1}\right)=\alpha \sqrt{\frac{2-S_{1}^{2}}{2}}+\frac{(1-\alpha) S_{1}}{2}$ with $f^{\prime}\left(S_{1}\right)=\frac{-\alpha S_{1}}{\sqrt{4-2 S_{1}^{2}}}+\frac{1-\alpha}{2}$. We solve the equation $f^{\prime}\left(S_{1}\right)=0$ with the root $S_{0}=\frac{2(1-\alpha)}{\sqrt{6 \alpha^{2}-4 \alpha+2}}$.
Since $f^{\prime}(0) \geq 0, f^{\prime}(\sqrt{2}) \leq 0$, it results that S_{0} is a maximum point for f. So we have

$$
\begin{aligned}
f\left(S_{1}\right) \leq f\left(z_{0}\right) & =\alpha \sqrt{\frac{1}{2}\left[2-\frac{4(1-\alpha)^{2}}{6 \alpha^{2}-4 \alpha+2}\right]}+\frac{(1-\alpha)^{2}}{\sqrt{6 \alpha^{2}-4 \alpha+2}} \\
& =\alpha \sqrt{\frac{4 \alpha^{2}}{6 \alpha^{2}-4 \alpha+2}}+\frac{(1-\alpha)^{2}}{\sqrt{6 \alpha^{2}-4 \alpha+2}} \\
& =\sqrt{\frac{3 \alpha^{2}-2 \alpha+1}{2}}=\sqrt{t}
\end{aligned}
$$

which prove (2.8).
So, we have the following refinement of (2.5).
Theorem 2.2. In every $A B C$ triangle is true the following chain of inequalities:

$$
\begin{aligned}
\alpha m_{a}+\beta w_{b}+\gamma w_{c} & \leq \alpha m_{a}+\beta \sqrt{s(s-b)}+\gamma \sqrt{s(s-c)} \\
& \leq \alpha \sqrt{\frac{2 s^{2}-s(\sqrt{s-b}+\sqrt{s-c})^{2}}{2}} \\
& +\frac{1-\alpha}{2}(\sqrt{s(s-b)}+\sqrt{s(s-c)}) \leq s \sqrt{t}
\end{aligned}
$$

where α, β, γ are positive numbers such that $(\beta-\gamma)(b-c) \geq 0$ and $\alpha+\beta+\gamma=1$.

Remark 2.1. If we take in (2.5) $\alpha=\beta=\gamma$ we obtain the Lessels-Pelling inequality.

Theorem 2.3. In every $A B C$ triangle are true the following inequalities:
i) $\quad m_{a} \leq \frac{\sqrt{t}}{2 \alpha} \cdot \frac{m_{a}^{2}}{s}+\frac{\alpha}{2 \sqrt{t}} s$
ii) $\quad \frac{\sqrt{t}}{2 \alpha} \frac{m_{a}^{2}}{s}+\frac{\alpha}{2 \sqrt{t}} s$

$$
\begin{equation*}
\leq \frac{t+\alpha^{2}}{2 \alpha \sqrt{t}} s-\frac{\sqrt{t}}{\alpha(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2} \tag{2.10}
\end{equation*}
$$

iii) $\quad m_{a} \leq \sqrt{s^{2}-\frac{2}{(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2}}$

$$
\begin{equation*}
\leq \frac{t+\alpha^{2}}{2 \alpha \sqrt{t}} s-\frac{\sqrt{t}}{\alpha(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2} \tag{2.11}
\end{equation*}
$$

where α, β, γ are positive numbers such that $\alpha+\beta+\gamma=1$ and $(\beta-\gamma)(b-c) \geq$ 0.

Proof. i) From (2.1), inequality (2.9) may be written as

$$
E \leq \frac{\sqrt{t}}{2 \alpha} E^{2}+\frac{\alpha}{2 \sqrt{t}} \quad \text { or } \quad(\sqrt{t} E-\alpha)^{2} \geq 0 .
$$

ii) From (2.3) we have

$$
\begin{align*}
\frac{\sqrt{t}}{2 \alpha} E^{2}+\frac{\alpha}{2 \sqrt{t}} & \leq \frac{\sqrt{t}}{2 \alpha}-\frac{\sqrt{t}}{\alpha(1-\alpha)^{2}} S_{2}^{2}+\frac{\alpha}{2 \sqrt{t}} \\
& =\frac{t+\alpha^{2}}{2 \alpha \sqrt{t}}-\frac{\sqrt{t}}{\alpha(1-\alpha)^{2}} S_{2}^{2} \tag{2.12}
\end{align*}
$$

Taking in (2.12) the notation from (2.1) we obtain the equality from statement.
iii) The first inequality is just inequality (2.3). We will prove the second inequality which is equivalent with

$$
\begin{aligned}
& \sqrt{1-\frac{2}{(1-\alpha)^{2}} S_{2}^{2}} \leq \frac{t+\alpha^{2}}{2 \alpha \sqrt{t}}-\frac{\sqrt{t}}{\alpha(1-\alpha)^{2}} S_{2}^{2} \\
& {\left[\sqrt{t-\frac{2 t}{(1-\alpha)^{2}} S_{2}^{2}} y-\alpha\right]^{2} \geq 0 .}
\end{aligned}
$$

Theorem 2.4. In every $A B C$ triangle is true the following chain of inequalities:
i) $\alpha m_{a}+\beta w_{b}+\gamma w_{c} \leq \alpha m_{a}+\beta \sqrt{s(s-b)}+\gamma \sqrt{s(s-c)}$

$$
\begin{aligned}
\leq & \frac{\sqrt{t}}{2} \frac{m a^{2}}{s}+\frac{\alpha^{2}}{2 \sqrt{t}} s+\beta \sqrt{s(s-b)}+\gamma \sqrt{s(s-c)} \\
\leq & \frac{t+\alpha^{2}}{2 \sqrt{t}} s-\frac{\sqrt{t}}{(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2} \\
& +\beta \sqrt{s(s-b)}+\gamma \sqrt{s(s-c)} \leq s \sqrt{t}
\end{aligned}
$$

ii) $\alpha m_{a}+\beta w_{b}+\gamma w_{c} \leq \alpha \sqrt{s^{2}-\frac{2}{(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2}}+\beta w_{b}+\gamma w_{c}$

$$
\begin{aligned}
\leq & \frac{t+\alpha^{2}}{2 \sqrt{t}} s-\frac{\sqrt{t}}{(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2}+\beta w_{b}+\gamma w_{c} \\
\leq & \frac{t+\alpha^{2}}{2 \sqrt{t}} s-\frac{\sqrt{t}}{(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2} \\
& +\beta \sqrt{s(s-b)}+\gamma \sqrt{s(s-c)} \leq s \sqrt{t}
\end{aligned}
$$

where α, β, γ are positive numbers such that $\alpha+\beta+\gamma=1$ and $(\beta-\gamma)(b-c) \geq 0$.
Proof. i) The first inequality it follows from inequalities $w_{b} \leq \sqrt{s(s-b)}$ and $w_{c} \leq \sqrt{s(s-c)}$.
The second inequality it results from (2.9). Also the third it follows from (2.10). It remain to prove that

$$
\begin{align*}
& \frac{t+\alpha^{2}}{2 \sqrt{t}} s-\frac{\sqrt{t}}{2(1-\alpha)^{2}}(\beta \sqrt{s-b}+\gamma \sqrt{s-c})^{2} \\
& \quad+\beta \sqrt{s(s-b)}+\gamma \sqrt{s(s-c)} \leq s \sqrt{t} \tag{2.13}
\end{align*}
$$

Using (2.1), inequality (2.13) may be written as

$$
\frac{t+\alpha^{2}}{2 \sqrt{t}}-\frac{\sqrt{t}}{(1-\alpha)^{2}} S_{2}^{2}+S_{2} \leq \sqrt{t}
$$

or

$$
t S_{2}^{2}-2 \sqrt{t}(1-\alpha)^{2} S_{2}+\left(t-\alpha^{2}\right)(1-\alpha)^{2} \geq 0
$$

or

$$
2 t S_{2}^{2}-2 \sqrt{t}(1-\alpha)^{2} S_{2}+\frac{(1-\alpha)^{4}}{2} \geq 0
$$

or

$$
\left(2 \sqrt{t} S_{2}-1+\alpha\right)^{2} \geq 0
$$

ii) The first inequality from this chain it follows from (2.11). The second it results also from (2.11). The third is true as $w_{b} \leq \sqrt{s(s-b)}, w_{c} \leq$ $\sqrt{s(s-c)}$, and last inequality from chain is the inequality from i)
Corollary 2.1. In every $A B C$ triangle is true the following inequality

$$
\begin{equation*}
\alpha m_{a}+\beta w_{b}+\gamma w_{c} \leq \sqrt{\frac{2 \alpha^{2}+(\beta+\gamma)^{2}}{2}} s \tag{2.14}
\end{equation*}
$$

where α, β, γ are positive numbers such that $(b-c)(\beta-\gamma) \geq 0$.
Proof. If we take $\alpha \rightarrow \frac{\alpha}{\alpha+\beta+\gamma}, \beta \rightarrow \frac{\beta}{\alpha+\beta+\gamma}, \gamma \rightarrow \frac{\gamma}{\alpha+\beta+\gamma}$ in (2.5), we obtain (2.14).
Corollary 2.2. In every $A B C$ triangle is true the following inequality

$$
m_{a} w_{a}+m_{c} w_{b}+m_{b} w_{c} \leq \sqrt{\frac{2 w_{a}^{2}+\left(m_{b}+m_{c}\right)^{2}}{2}}
$$

Proof. Since $(b-c)\left(m_{c}-m_{b}\right) \geq 0$, if we take $\alpha=w_{a}, \beta=m_{c}, \gamma=m_{b}$ in (2.14), we obtain the inequality from the statement.

Corollary 2.3. In every $A B C$ triangle is true the following inequality:

$$
\begin{equation*}
m_{a} m_{b} m_{c}+w_{a} w_{b} m_{c}+w_{a} m_{b} w_{c} \leq \sqrt{m_{b}^{2} m_{c}^{2}+\frac{w_{a}^{2}\left(m_{b}+m_{c}\right)^{2}}{2}} \tag{2.15}
\end{equation*}
$$

Proof. Since $(b-c)\left(\frac{1}{m_{b}}-\frac{1}{m_{c}}\right) \geq 0$, if we take in (2.14) $\alpha=\frac{1}{w_{a}}, \beta=\frac{1}{m_{b}}$, $\gamma=\frac{1}{m_{c}}$, we obtain the inequality from the statement.

References

[1] Garfunkel, J., Problem E 2504, Amer. Math. Monthly 81 (1974), 1111 solution (by C. S. Garden) Amer. Math. Montly 83 (1976), 289-290
[2] Lessels, G.S. and Pelling, M.J., An inequality for the sum of two angle bisectors and a median, Univ. Beograd, Publ. Electrotehn. Fak. Ser. Mat. Fiz. no. 577, no. 598 (1977), 59-62
[3] Patuwo, B.E., Thomas, R.S.D. and Chung-Lie Wang, The triangle inequality of Lessels and Pelling, Univ. Beograd, Publ. Electrotehn. Fak. Ser. Mat. Fiz. no. 678, no. 715
[4] Mitrinović, D.S., Pečarić, J.E. and Volonec, V., Recent Advances in Geometric inequalities, 222-223
[5] Panaitopol, L., Some about geometric inequalities, G.M.-B no. 8 (1981), 296-298 (Romanian)
[6] Drăgan, M., Some geometric inequalities, Rev. Arhimede no. 7-12 (2008), 6-8 (Romanian)
[7] Drăgan M., Some extensions and refinements of Lessels-Pelling inequality, G.M.-B. no. 6-7-8 (2013), 281-284 (Romanian)
[8] Octogon Mathematical Magazine (1997-2014)
Hărmanului 6, 505600 Săcele-Négyfalu, Braşov, Romania
E-mail address: benczemihaly@yahoo.com
61311 Timişoara 35,
Bl. 0D6, Sc. E, et. 7, Ap. 176, Sect. 6,
Bucureşti, Romania
E-mail address: marius.dragan2005@yahoo.com

