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Abstract. Testing is a crucial step in the software development life-
cycle. It is common to dedicate at least 50% of the project resources to
this step. Model-based testing is a testing approach that can facilitate the
automatic test-case generation and thus testing costs can be significantly
reduced.
The goal of this article is to address some of the fundamental problems
of automatic test-case generation in safety critical, reactive systems. The
research involved also focuses on the development and analysis of intel-
ligent methods for the optimization of the automatic test-case genera-
tion process. Some of the main areas of interest are: statistical testing,
evolutionary testing and estimation of distribution algorithms used in
test-automation.
The practical part of the thesis aims to test the proposed methods and
algorithms on problems within the domain of railway automation.

1 Introduction

Testing is a crucial step in the software development life-cycle. It is common to
dedicate at least 50% of the project resources to this step [Bei90].

Model-based testing is a testing approach that can facilitate automatic test-
case generation. Contrary to traditional testing, instead of defining individual
test cases, the model-based approach first constructs the behavior model or
usage model of the system and test cases are generated automatically or semi-
automatically based on the model. As a consequence, testing costs can be sig-
nificantly reduced.

The report is structured as follows. Section 2 briefly describes the process of
model based testing, presents its benefits, as well as the main modeling notations
and test selection criteria. Section 3.1 provides an introduction to the area where
the methods and algorithms suggested during the research process will be tested.
This area is namely the area of reactive systems, more precisely, the domain of
train control and protection systems. Section 4 presents the main elements of
the research process. Part 4.1 focuses on the fundamental literature relevant for
the research areas related to this thesis, namely: Software Testing, Model Based
Testing, Formal Methods, Genetic Algorithms, Artificial Intelligence, Railway
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Operation and Control, and Software Engineering. Finally, section 4.2 describes
the main directions and domains that will be investigated during the research
process, while

2 Foundations of model based testing

In this section, the main steps of the process of model based testing are presented,
as well as the benefits of this testing technique over other testing methods (e.g.
manual testing, script based testing, capture/replay testing). In addition, the
main modeling notations and test selection criteria are described.

2.1 The process of model based testing

The main idea of the model-based testing is to derive a model based on the
abstractions of the system under test (SUT) and/or its environment and then
to generate test cases based on this model. The process involves the following
main steps.

1. Model the system under test (SUT) and/or its environment.
2. Generate abstract tests from the model.
3. Concretize the abstract tests to make them executable.
4. Execute the tests on the SUT and assign verdicts.
5. Analyze the test results. [UL07]

Thus, the first step is building a model of the SUT and/or its environment
based on the available requirements or specification documents. The second step
consists of defining the test selection criteria. A selection criterion can describe
a given functionality of the SUT (requirements-based selection criteria), it can
relate to the structure of the model (state coverage, transition coverage), or to
stochastic characterisations (randomness or user profiles). During the third step,
the test selection criteria are transformed into test case specifications which for-
malize the test selection criteria. Next, an automatic test case generator derives
a test suite based on the model of the SUT and a test case specification. Finally,
the test cases are run. Because the model and the SUT are on different levels of
abstractions, the input part of a test case must be concretized first. This step is
performed by a component called adaptor. At the end, the output of the SUT is
compared with the expected output, and the result of this comparison is called
verdict. The verdict can take the following outcomes: pass, fail or inconclusive.

Given this definition of model based testing, the process is basically the
automation of black-box test design. Thus, when applying model based testing,
the tester has to generate executable test cases that include oracle information,
i.e., expected output values of the SUT.

When designing the model, the question arises, whether the testers should
reuse the model that was used to develop the system, or whether they should
build a completely new model from scratch. In practice, there are many possi-
bilities, however, based on [UL07], it is advisable to avoid the two extreme cases
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and choose a middle way instead. Reusing the development model usually comes
with the disadvantage that the test cases and the system itself are not indepen-
dent enough. For example, if there is a fault in the model itself, it will propagate
to both the system and test cases. In addition, the model used for development
is usually too detailed for test generation, and several different aspects should be
left out from it. The other extreme, i.e., to generate a new model from scratch
can be extremely useful, especially when it is produced by a testing team dif-
ferent from the developing team. This way, the independence between test cases
and the system can be maximized. Although very effective, this approach can
be also very expensive. The middle way thus would mean to reuse some part of
the developing model, and than adapt it in order to facilitate test generation.
For example, it is common to reuse some of the high-level class diagrams and
use-cases, and then to add the behavioral details needed for test generation. Ac-
cording to [UL07], the typical simplification steps of the development model are
the following:

– Focus primarily on the SUT
– Show only those classes (or subsystems) associated with the SUT and whose

values will be needed in the test data
– Include only those operations that you wish to test
– Include only the data fields that are useful for modeling the behavior of the

operations that will be tested
– Replace a complex data field, or a class, by a simple enumeration. This allows

you to limit the test data to several carefully chosen example values (one for
each value of the enumeration).

2.2 Benefits of model based testing

One of the main benefits of model based testing relies in its fault detecting abil-
ities. Since test cases are usually derived directly from functional requirements,
it is more likely to detect faults in the SUT. Comparative studies presented in
[UL07] show that the number of faults detected in the SUT have always been
greater or equal to the number of faults detected with manual testing. However,
the effectiveness of model based testing in fault detection still depends on the
ability of the tester to design a good model and to apply the right test selection
criteria.

Another benefit of the model based testing process is its role played in re-
ducing testing costs and time. Instead of defining individual test cases like
in the classical testing methods, a model of the software behavior is created and
specific test cases are derived from this model and are applied to the SUT. The
generation of the test cases can be done automatically or semi-automatically,
this way the costs related to testing can be significantly reduced [UPL12]. Usu-
ally, manual testing has lower initial design costs, but its ongoing execution costs
make it expensive as the number of releases increases. Automated test scripts
based on a model on the other hand, are generally more expensive to design
initially but can become cheaper than manual testing after several releases.
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Model based testing can also improve test quality, mainly because the
test cases are easy to relate to the original system requirements. Measuring the
quality of the test suite becomes easier in the sense that it is possible to quantify
the coverage of the model. Also, by using automated test generator tools, the
design process becomes reproducible. In addition, the tester can produce many
more tests than with manual test design.

System requirements are usually informal and are formulated in natural lan-
guage. Therefore, they may often contain unclear specifications, omissions, or
contradictions. Model based testing can help in finding these kinds of require-
ments issues, since the consistency and completeness of the requirements are
checked. Because the model is usually expressed in a domain-specific modeling
language, it becomes easier to understand by the domain experts. Also, since
the process encourages early modeling, the requirements issues are more likely
to be found in the requirements gathering phase rather than in later phases (e.g.
design and implementation). Faults are much cheaper to fix in the early phases.

When measuring test quality, it is important that each test case can be easily
related to the model, to the test selection criteria, and also to informal system
requirements. This ability is called traceability. Since the test cases are directly
derived from the model, model based testing obviously facilitates traceability.

2.3 Notations for modeling

There are several abstraction techniques and notations for model based testing
available. According to [UL07], these notations can be grouped as follows.

– Pre/post (or state based) notations: The system is modelled as a collec-
tion of variables which represent the internal state of the system at a given
time. In addition to the variables, operators that can modify the variables
are also described. Instead of using programming language code to define the
operators, preconditions and postconditions are used. Examples of pre/post
notations include B1, the UML Object Constraint Language (OCL)2, the
Java Modeling Language (JML)3, VDM4 and Z.

– Transition based notations: As suggested by the name, these notations
describe the transitions between the different states of the system. Transi-
tions based notations are typically graphical node-and-arch notations, e.g.:
finite state machines, state charts (e.g., UML State Machines, Simulink State
flow charts), labeled transition systems, and I/O (input/output) automata.

– Functional notations: In the case of functional notations, the system is
represented as a collection of mathematical functions.

1 B method home page: http://www.methode-b.com/en/; last visited on: 18/05/2014
2 OMG OCL specification page: http://www.omg.org/spec/; last visited on:

18/05/2014
3 JML home page: http://www.eecs.ucf.edu/ leavens/JML//index.shtml; last visited

on: 18/05/2014
4 VDM home page: http://www.vdmportal.org/twiki/bin/view; last visited on:

18/05/2014
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– Operational notations: When using operational notations, the system is
modelled as a set of executable processes, executing in parallel. These nota-
tions are especially suited for describing distributed systems and communi-
cation protocols, e.g.: Petri net notations.

– Statistical notations: The SUT is represented as a probability model of the
events and input values. Although these notations are suitable for modeling
events and their input values, they are weak at predicting the expected out-
put of the SUT, i.e., the automatic generation of oracles. As a consequence,
statistical notations are typically used together with other notation types.
For modeling expected usage profiles, one of the most successful methods
are Markov chains.

– Data flow notations: Rather than modeling the control flow of the system,
data flow notations represent the flow of the data through the system. For
example, Lustre and the block diagram notations that are used in Matlab
Simulink 5 for the modeling of continuous systems use data flow notations.
The language Lustre will be presented in section 4.3.

2.4 Test selection criteria

[UL07] introduces a family of coverage criteria that measure how well the gen-
erated test suite covers the model. These coverage criteria remain independent
from the code of the SUT. As a result, it is possible to start designing the
test cases even before the development of the code has been started. However,
in practice it is advisable to combine model based coverage criteria with code
based criteria, after the code of the SUT has become available.

This following section offers a brief overview of the model based criteria. For
a complete description please refer to [UL07]

Structural model coverage criteria Structural model coverage criteria orig-
inate from code based coverage criteria [AO08]. They can be further divided into
several categories.

– Control-flow-oriented coverage criteria: The most relevant of them are
the following.

• Statement coverage: The test suite must execute every reachable
statement.

• Decision coverage (or branch coverage): the test suite must ensure
that each reachable decision is made true by some tests and false by
other tests.

• Path coverage: The test suite must execute every satisfiable path
through the control-flow graph.

5 Simulink home page: http://www.mathworks.com/products/simulink/; last visited
on: 17/05/2014
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– Data-flow-oriented coverage criteria: Control flow graphs can be an-
notated with definition and use of variables. The graph then becomes a
data-flow graph. Informally, the definition of a given variable is writing to
the variable, while the use of a variable is reading from it. Given these defini-
tions, the aim of data-flow-oriented coverage criteria is to test all definitions,
all uses, and all definition-use paths.

– Transition-based coverage criteria: Transition-based coverage criteria
are structural model coverage criteria developed for transition based model-
ing notations such as finite state machines, extended finite state machines,
labeled transition systems, and state charts (ref elozo fejezet). The most
commonly used criteria are the following.
• All-states coverage: Every state of the model is visited at least once.
• All-transitions coverage: Every transition of the model must be tra-

versed at least once.
– UML-based coverage criteria: The coverage criteria presented so far can

be applied to UML notations, too. In addition, several UML-specific coverage
criteria can be defined. For example, for class diagrams we can measure
the following coverage measures:
• Generalization coverage: This criterion requires that for every spe-

cialization defined in a generalization relationship, an instance of that
specialization be created by the test suite.

• Class attribute coverage: This criterion requires coverage of a set of
attribute value combinations for each class in the class diagram.

Data coverage criteria The three widely used families of data coverage criteria
are the following.

– Boundary value testing: Many of the faults found in the SUT are located
at the frontier between two functional behaviors. The idea behind boundary
value testing is to choose input values at the boundaries of the input domains.

– Statistical data coverage: Input data is randomly generated with a given
distribution D.

– Pairwise testing: This criterion requires a test case for each possible com-
bination of values of all pairs of parameters. It is based on the assumption
that most defects are created as a result of no more than two test parameters
(test values) being in a certain combination.

Requirements based criteria Based on [UL07], a requirement is a testable
statement of some functionality that the product must have. Ensuring that each
requirement will be tested is a key issue in the validation process. When apply-
ing model based testing, there are two main methods to measure requirements
coverage.

1. Record the requirements as annotations inside the behavior model.
2. Formalize the requirements and use this formal description as test selection

criterion when applying automated test generation based on the behavior
model.
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Statistical test generation methods In the test selection method presented
in 2.4, statistical distributions were used to generate test inputs. In the case of
statistical test generation methods however, statistical distributions are used to
generate whole test cases, i.e., sequences of operation calls.

During statistical test generation, test cases are usually derived from the
environment, because the environment model determines the usage patterns of
the SUT. Therefore, the model in this case, is the representation of the system
usage, not its behavior.

Statistical test generation is typically done using Markov chains, which de-
scribe the expected usage profile of the SUT. The test case generation is a
random walkthrough of the Markov chain, where the random choice of the next
transition is made using the probability distribution of the outgoing transitions
[UL07].

3 Reactive systems

In the case of transformational systems, the relation of the input to the output
is sufficient to completely characterise the behavior of the program. Such pro-
grams also have start and end points in time. Computation is performed with
no reference to the operating environment.

Contrary to transformational systems, reactive system are systems that have
a cyclic behavior, and permanently interact with their environment. Starting
from some initial input, they will continue to interact with their environment
during the course of their execution. They cannot be completely characterised in
terms of the relation between input and output. The term reactive system was
first introduced by David Harel and Amir Pnueli [HP85].

To describe the behavior of reactive systems, there are two main models
available. As illustrated by figures 1 and 2, we can speak about an event-triggered
and a time-triggered model. As suggested by its name, in the case of time-
triggered reactive systems, one cycle of the system is performed within a given
period of time. The cycles of event-driven systems on the other hand are triggered
by certain events.

Loop forever
Wait(Event)
Read sensors
Compute outputs
Write actuators

End loop

Environment

Fig. 1. Event-triggered model of a reactive system
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Loop forever
Delay(Period)
Read sensors
Compute outputs
Write actuators

End loop

Environment

Fig. 2. Time-triggered model of a reactive system

3.1 Train control and protection systems

Within the domain of reactive systems, the methods and algorithms that will be
designed during the research process, will be tested in the area of train control
and protection systems.

The role of train control and protection systems is to ensure safe operation in
the case of human failure. Thus, these systems involve technical installations that
fall in the category of safety-critical systems. By definition, a system is considered
safety-critical, if its failure or malfunction may result in death or serious injury
to people, loss or severe damage to equipment, or environmental harm. Safety
critical systems can be classified into five levels called safety integrity levels
(SILs). The more dangerous the consequences of a software failure, the higher
the software integrity level will be. Table 1 describes the different safety integrity
levels.

SIL THR per hour and per function

4 10−9 ¡ THR ¡ 10−8

3 10−8 ¡ THR ¡ 10−7

2 10−7 ¡ THR ¡ 10−6

1 10−6 ¡ THR ¡ 10−5

Table 1. Safety Integrity Levels; THR: Tolerable Hazard Rate

The earliest form of train protection systems were train stops. Train stops
consist of moveable clamps, located beside the signals. The clamps touch a valve
on a passing train if the signal is red and open the brake line, applying the
emergency brake.

The working principle of inductive systems is based on coils and magnetic
induction. Magnets are mounted beside the rails and on the locomotive, and data
is transmitted magnetically between them. One variant of inductive systems are



9

PZB systems (German: Punktförmige Zugbeeinflussung, meaning Point-shaped
train control). PZBs can, as suggested by their name, can only influence the
train when it is passing the transmitter. Their main functions are the following.

– The vigilance control checks whether the driver of the railway traction
vehicle has acknowledged the stop signal by pressing the corresponding but-
ton.

– The break monitoring supervises the process of breaking before a stop
signal. On the vehicle side this is done by discrete checkpoints (in case of old
systems) or by calculating a braking curve that determines if the train can
stop before the next red signal. If not, the break is executed.

– The emergency break executed in case a stop signal has been passed.

The French alternative to the PZB is the crocodile. The crocodile was first
introduced in the 1920s. Here, the signal aspect is represented as a positive or
negative voltage.

In order to introduce a unified system in the European railways and to replace
the incompatible safety systems currently used, the European Train Control
System (ETCS) was designed. Standard trackside equipment and a standard
controller within the train cab are introduced. The ETCS standards are imple-
mented progressively, having four different levels. In its final form the standard
aims to eliminate the need for lineside signals, which are difficult to follow if the
train travels at high speed. All lineside information will eventually be transferred
to the driver electronically. The technical specification of the ETCS is managed
by the European Railway Agency (ERA) 6.

Standards, regulations European railway systems are regulated by the Eu-
ropean Committee for Electrotechnical Standardization (CENELEC) 7. These
standards are not laws, they only express recommendations. The standards apply
to any safety-related software that is used in railway control and monitoring sys-
tems, including application programming, operating systems, supporting tools
and firmware.

The EN 50126 standard refers to the railway system in general, EN 50129
to the signalling system, while the EN 50128 to subsystem software. The stan-
dards are not publicly available.

Table 2 shows the modeling techniques recommended by EN 50128 for dif-
ferent SIL levels.

4 Elements of the research process

4.1 Fundamental literature

This section presents the main areas that are related to present research work,
and the relevant fundamental literature for each of these areas.
6 ERA home page: http://www.era.europa.eu/Pages/Home.aspx; last visited on:

17/05/2014
7 CENELEC home page: http://www.cenelec.eu/; last visited on: 17/05/2014
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TECHNIQUE/MEASURE SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

Data Modeling R R R HR HR

Data Flow Diagrams - R R HR HR

Control Flow Diagrams R R R HR HR

Finite State Machines or State Transition
Diagrams

- HR HR HR HR

Time Petri Nets - R R HR HR

Decision/Truth Tables R R R HR HR
Table 2. Modeling techniques; R-recommended, HR-Highly recommended; Source:
CENELEC EN 50128

– Testing [Mye04, UL07]
– Model Based Testing [AO08, BJK+05]
– Formal Methods [HU90]
– Evolutionary Computing [ES03]
– Artificial Intelligence [RN95]
– Railway Operation and Control [Pac09]
– Software Engineering [Som07]

Related Work Besides the fundamental literature presented in section 4.1, this
section reviews some further works related to the intelligent methods used for
model-based automatic test generation.

[PTF98] present the principles and methods of statistical software testing.
Test profiles and sizes are derived based on structural and functional criteria.
The method applied here is also demonstrated based on an experiment involving
safety-critical systems from different application areas. In [TFW93] the method
proposed for statistical testing in [PTF98] is described in more detail for func-
tional testing.

[GDGM01] and [ADG04] introduce a generic method for path-based statisti-
cal testing based on any given graphical representation of the system’s behavior.
Uniform random generation routines are used for choosing test cases from the
set of all possibilities.

In [BScGG06] and [BSGG07] the method described in [ADG04] is optimized
for large programs, where the fraction of feasible paths in the control-flow graph
is usually small compared to the unfeasible paths. A path in the control-flow
graph is considered feasible if there exists an input case exerting the path. The
approach introduced is called EXIST (Exploration - eXploitation Inference for
Software Testing). It is a generative learning approach based on Estimation of
Distribution Algorithms (EDAs) and Online Learning that aims to maximize
the number of distinct feasible paths covered in a test suite.

[CCRS02] and [IKNH94] use an evolutionary algorithm to automatically gen-
erate a test program for pipelined processors by maximizing a given verification
metric. In [CL11] Genetic evolutionary algorithms (GEA) are also used for test
generation. The problem of parameter selection is discussed and a Markov chain
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based method is used to model the test generation process and to parametrise
the process characteristics. The method is used here in particular for generating
test cases to verify hardware design for semiconductor industry.

[Say99] discusses several software testing methods based on Markov chain us-
age models. In [DZ03] a framework for testing time-critical systems and software
is described. The framework combines statistical usage testing based on Markov
chain usage models and specification-based monitoring using sequence diagrams
and formal description techniques.

Finally, [MP96] describe the theory of EDAs, while [SLL03] present the prin-
ciples of evolutionary testing and the possibilities of using EDAs for testing, and
compares the performance of different algorithms based on experimental results.

4.2 Topics to be investigated

This section reviews several intelligent methods applied in testing. During the
research process, these methods will be studied more in detail and the possibility
of improving them and adapting them for reactive systems will be investigated.
Besides the intelligent methods, some other topics are presented that are relevant
for testing reactive systems.

For evaluating the methods proposed, we will carry out experiments using
simulations of a real-world, industrial problem.

Evolutionary testing In Evolutionary testing, heuristic combinatorial opti-
mization techniques are used for test input generation. Examples of such tech-
niques are: Simulated Annealing [KGV83], Tabu Search [GL97], and evolutionary
algorithms.

In the class of evolutionary algorithms Genetic Algorithms (GAs) are one of
the most popular and best known techniques for solving optimization problems
[ILES99, SLL03]. GAs are a population based search method and they involve
the following main steps:

1. Set of individuals or candidate solutions to the optimization problem is
created. This set is referred to as a population.

2. Promising individuals are selected from the population based on a fitness
function.

3. A new population is generated based on the selected individuals using
crossover and mutation operators.

The domain of possible inputs, i.e., the possible test cases is typically too
large to be exhaustively explored, even for small programs. The dimensions of
the search space are directly related to the number of input parameters of the
SUT [VLW+13]. Since evolutionary algorithms are able to produce effective solu-
tions for complex and poorly understood search spaces with multiple dimensions,



12

they can also be successfully applied for testing. However, the greatest challenge
remains to formulate the testing task as an optimization problem. This will
influence the success of the test case design and test input generation.

Depending on how the fitness function is formulated, evolutionary testing can
be both applied for structural testing (e.g.: maximizing coverage) and functional
testing (e.g.: fault detection).

Testing with estimation of distribution algorithms Although GAs have
been applied to many problems with good results [SLL03], the determination
of the parameters needed by the algorithm (crossover and mutation operators,
probabilities of crossover and mutation, population size, number of generations,
etc.) can be difficult and can lead itself to an optimization problem.

These problems are eliminated in the Estimation of Distribution Algorithms
[LELP00]. In the case of EDAs, instead of the classical crossover and mutation
operators, the probability distribution of the selected individuals is estimated
and this distribution is then sampled to create the next population . Based on
the experiments described in [ILES99] EDAs obtain the same quality result with
fewer generations as other evolutionary algorithms.

Formally, let X = (X1, X2, ..., Xn) denote an n-dimensional random variable,
and x = (x1, x2, ..., xn) a possible instantiation of X. The joint probability dis-
tribution of X is denoted by p(x) = p(X = x). The conditional probability of Xi

given the value xj of the variable Xj is represented as p(Xi = xi|Xj = xj)
or simply as p(xi|xj). Dl will denote the population of the l-th generation
and DSe

l the selected individuals. DSe
l constitute a data set of N cases of

X = (X1, X2, ..., Xn).
For each generation, the probability of an individual being among the selected

individuals will be estimated based on DSe
l . Formally, the joint probability dis-

tribution of the l-th generation will be calculated as pl(x) = p(x|DSe
l−1).

Based on these notations, the pseudocode for the abstract EDA can be writ-
ten as [SLL03]:

Do ← Generate M individuals (the initial population) randomly
Repeat for l=1,2,..., until stopping criterion met
DSe

l−1 ← Select N ≤M individuals from Dl−1

pl(x) = p(x|DSe
l−1) ← Estimate the probability distribution of an indi-

vidual being among the selected individuals
Dl ← Sample M individuals (the new population) from pl(x)

The selection step is done using the strategies in evolutionary computing, by
fitness functions. The key step of the algorithm is how the probability distribu-
tion is estimated at each generation.

Online learning for statistical testing The EXIST (Exploration - eXploita-
tion Inference for Software Testing) framework presented in [BScGG06] and
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[BSGG07] proposes an adaptive sampling mechanism inspired by the Estimation
of Distribution Algorithms (EDAs) and online learning for statistical software
testing.

The framework generates the test cases based on the control-flow graph of
the SUT. The paths in the graph can be either feasible or infeasible. A path
is infeasible if it violates some dependencies between the different parts of the
program. A constraint solver can label the paths as feasible or infeasible. The
EXIST framework was developed for systems where the number of the feasible
paths compared to the infeasible ones is small. It aims to retrieve distinct feasible
paths with high probability.

Starting from an initial set of labeled paths, the EXIST iteratively generates
candidate paths based on the current distribution of the program paths and
updating this distribution after the path has been labeled as feasible or infeasible.
The number of available labeled paths is limited by the labeling cost (because
of the runtime of the constraint solver). The probabilistic model is built on top
of an extended Parikh map [HU90] representation. The representation provides
a propositional description of long structured sequences (program paths).

EXIST involves two modules: the Init module and the Decision module.
The Init module estimates the probability for a path to be feasible based on its
extended Parikh representation, while the Decision module uses the distribution
of the program paths to iteratively construct the current path s.population

Test input generation As mentioned in section 3, reactive systems have cyclic
behavior. At each cycle they read the inputs coming from their environment,
compute the outputs and update the internal state of the system. Considering
this, instead of generating a single test input, the tester has to provide test
sequences, i.e., sequences of input vectors.

Another issue that arises during test input generation is that input sequences
cannot be generated offline. Because a reactive system is in continuous interac-
tion with its environment, the input vector at a given reaction may depend on
the previous outputs. Thus, input sequences can only be produced on-line, and
their elaboration must be intertwined with the execution of the SUT.

4.3 Tools for modeling and automated test generation for reactive
systems

To investigate the way evolutionary testing and other intelligent methods are
applicable for reactive systems, we propose to extend the Lutin automatic test
generator tool for reactive systems with an evolutionary testing module. The
Lutin tool generates the test inputs based on the Lustre descriptions of the
programs. Sections 4.3 and 4.3 present the description language Lustre, and the
automatic test generator tool Lutin for reactive systems.
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Lustre Lustre8 is a synchronous language9 based on the data flow model
and designed for the description and verification of reactive systems [CPHP87,
HCRP91]. The language can be used for both writing programs and expressing
program properties.

Lustre is a functional language structured on so-called nodes. A node repre-
sents a program or a subprogram and it operates on streams: a finite or infinite
sequence of values of a given type. A program has a cyclic behavior, so that at
the nth execution cycle of the program, all the involved streams take their nth
value. A node defines one or several output parameters as functions of one or
several input parameters. All these parameters are streams.

Listing 1.1 shows an example10 of a Lustre node.

Listing 1.1. Example of Lustre code

1 node Never (A: bool) returns (never_A: bool);

let

3 never_A = not(A) -> not(A) and pre(never_A);

tel

The node defined in listing 1.1 takes as input the Boolean stream A =
(A1, A2, ..., An, ...) and defines as output another Boolean stream never A =
(never A1, never A2,
..., never An, ...). The output is true if and only if the input has never been true
since the beginning of the program execution.

A Lustre node can be represented as an operator network. An operator net-
work depicts the way that input flows are transformed into output flows through
their propagation along the program paths. The operator network equivalent to
the node in listing 1.1 is illustrated in figure 3.

A

never A

pre →

Fig. 3. The operator network for the node Never

8 Lustre home page: http://www-verimag.imag.fr/Lustre-V6.html; last visited on:
17/02/2014

9 a programming language optimized for programming reactive systems
10 Example taken from http://www-verimag.imag.fr/DIST-

TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf; last visited on: 17/02/2014
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Assertions can be included into the body of a Lustre program. They are
boolean expressions that should be always true. Safety properties, the properties
of a program’s environment can be easily specified by using the assertion me
chanism.

Lutin Lutin 11 is an automatic test generator for reactive programs that focuses
on functional testing. This means that the SUT will be treated as a black-box,
for which we want to check some properties [Jah04].

The language is based on the use of descriptions of the environment (con-
straints) and the expected properties of the SUT. The main problem is to solve
the constraints and to randomly generate inputs that satisfy the assertions which
can be both boolean and numerical constraints [RNHW98]. In the first prototype
of Lutin the environment behavior was described by Lustre specifications which
described what realistic SUT inputs should be. Because Lustre was found too
restrictive to express different testing scenarios, Lutin was redesigned. Now, a
Lutin program is basically an automaton where each transition is associated to a
set of constraints that define the possible outputs, and a weight that defines the
relative probability for each transition to be taken. Listing 1.2 shows an example
of Lutin code.

Listing 1.2. Example of Lutin code

node choice () returns( x :int) =

2 loop {

|3: x = 42

4 |1: x = 1

}

Transitions are realized with the choice operator —, as illustrated in the
code example 1.2. It is possible to favor one branch over the other using weight
directives (:3 and :1 in the code example).

Improving Lutin parameters Lutin performs a guided random exploration of
the SUT input state space by asking experts to write programs that describe the
usage of the system. Instead of asking experts, a way to improve Lutin would be
to let some evolutionary algorithms choose some parameters of Lutin programs,
such as choice point weights or variable bounds (described is chapter 4.3).
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