
Semi-supervised learning techniques: k-means clustering
in OODB Fragmentation

Adrian Sergiu Darabant Alina Campan

Faculty of Mathematics and Computer Science Faculty of Mathematics and Computer Science
Babes Bolyai University – Cluj Napoca Babes Bolyai University – Cluj Napoca

1 Kogalniceanu, Cluj Napoca, 3400 1 Kogalniceanu, Cluj Napoca, 3400
Romania Romania

dadi@cs.ubbcluj.ro alina@cs.ubbcluj.ro

Abstract – Vertical and horizontal fragmentation are central
issues in the design process of Distributed Object Based
Systems. A good fragmentation scheme followed by an
optimal allocation could greatly enhance performance in such
systems, as data transfer between distributed sites is
minimized. In this paper we present a horizontal
fragmentation approach that uses the k-means AI clustering
method for partitioning object instances into fragments. Our
new method applies to existing databases, where statistics are
already present. We model fragmentation input data in a
vector space and give different object similarity measures
together with their geometrical interpretations. We provide
quality and performance evaluations using a partition
evaluator function.

I. INTRODUCTION

Distributed Object Oriented databases aim to minimize

performance costs that are incurred by inter-processor
communication and data transfers by regrouping related
objects into clusters to reduce the number of unnecessary
accesses to irrelevant data and by dividing query
executions over multiple processors of a network in order
to achieve maximum parallelism.

The distribution design of an Object Oriented Database
(OODB) should handle data partitioning into a cohesive set
of fragments, their assignment to local processing sites and
the evaluation and fine-tuning for system performance.
Minimizing data transfer has been already considered by
almost all distribution techniques [1], either supporting
complex characteristics of the object oriented model, or
just flat data models. Recently these issues have been
considered in ([4], [5], [6], [7], [2]). For fragmenting a
class it is possible to use two basic techniques: vertical
fragmentation and horizontal fragmentation. In an Object
Oriented (OO) environment, horizontal fragmentation
distributes class instances into fragments. Each object has
the same structure and a different state or content. Thus, a
horizontal fragment of a class contains a subset of the
whole class extension. Horizontal fragmentation is usually
subdivided in primary and derived fragmentation. On the
other hand, the vertical fragmentation breaks the logical
structure of the class: attributes and methods, and
distributes them across the fragments. Each fragment
contains, in this case, the same objects, but with different
subsets of the attributes and methods [9].

We focus in this paper on horizontal object oriented
fragmentation by using alternative methods to cluster
objects into fragments. The OODB environment supports
object oriented data models that are inherently more
complex than the relational model. Features like
encapsulation, inheritance, class aggregation hierarchy,

and association relations complicate the definition of the
horizontal class fragmentation. Different approaches have
been identified in solving issues regarding fragmentation,
which, to a large extent, aim to extend and develop the
relational fragmentation and allocation techniques to
OODBs. Research papers in the OO area claim that
relational fragmentation methods can be applied to the
object oriented data model to some extent [8], while others
state that starting from relational fragmentation techniques
brings a handicap, which is difficult to cover.

Related Work

Karlapalem identifies several issues and criteria for

fragmenting distributed OODB horizontally and vertically
[1]. Bellatreche et al. [10], Ezeife and Barker [2], Savonnet
et. al. [11] propose algorithms for horizontal fragmentation
of object classes. Vertical fragmentation is addressed by
Bellatreche et. al. [12], Ezeife and Barker [4], Malinowski
[13]. Mixed fragmentation is considered in [14] which
starts from experimental results and propose a set of
heuristics for mixed fragmentation. Ravat [7] proposes a
mixed partitioning design approach using the Bond Energy
Algorithm (BEA) for both horizontal and vertical object
fragmentation. To group attributes, BEA uses attribute
affinity measures, which represent the number of times two
attributes are accessed together by a method. Predicate
affinity measures are used in horizontal partitioning in
order to evaluate the distance between two predicates.
Ezeife uses minterm predicates identified in queries and
object affinity measures with respect to these predicates to
achieve primary and derived horizontal fragmentation. She
defines fragmentation taxonomy that differentiates
between classes with simple attributes/methods and
complex attributes/methods. Savonnet et. al. present an OO
distribution design methodology based on class
dependency graph. They identify groups of co-referenced
classes with respect to a set of methods for which parallel
execution can be optimized. These groups of classes are
partitioned together in fragments. Ghandeharizadeh and
Wilhite [15] represent a database as a graph of objects.
This graph is broken into subgraphs, which are allocated to
nodes by means of a greedy object placement algorithm so
that workload in the system meets imposed requirements.
Some research papers present evaluation methodologies
for fragmentation and/or allocation quality and system
performance.

Contributions

We propose new techniques for horizontal

mailto:dadi@cs.ubbcluj.ro

fragmentation in object-oriented databases with simple
attributes and methods. They rely on AI non-supervised
clustering techniques for partitioning classes into sets of
similar instance objects, rather than following the
traditional minimal predicate set method. We consider the
k-means centroid based clustering method [3]. Although
this is a well-known clustering technique, it has not been
used yet in object-database fragmentation, to our
knowledge.

The algorithm groups objects together by their similarity
with respect to a set of user queries with conditions
imposed on data. Similarity (dissimilarity) between objects
is defined in a vector space model and is computed using
different metrics. As a result, we cluster objects that are
highly used together by queries.

In order to improve fragmentation quality, we propose
several methods for choosing initial cluster centroids,
according to queries semantic.

The paper is organized as follows. The next section
presents the object data model and the constructs used in
defining the object database and expressing queries. It also
introduces the vector space model we use to compare
objects, methods for constructing the object characteristic
vectors and similarity metrics over this vector space.
Section 3 presents our fragmentation algorithm. In section
4 we present a complete fragmentation example over a
class hierarchy and we evaluate the quality of our
fragmentation schemes by using a variant of the Partition
Evaluator [17].

II. DATA MODEL

We use an object-oriented model with the basic features

described in the literature [9][16].
Object-oriented databases represent data entities as

objects supporting features like inheritance, encapsulation,
polymorphism, etc. Objects with common attributes and
methods are grouped into classes. A class is an ordered
tuple C=(K,A,M,I), where A is the set of object attributes,
M is the set of methods, K is the class identifier and I is the
set of instances of class C. We deal in this paper only with
simple attributes and simple methods. Simple attributes
have primitive data types as their domain. Simple methods
access only attributes of their class. Every object in the
database is uniquely identified by an OID.

Each class can be seen in turn as a class object. Class
objects are grouped together in metaclasses [9].

Classes are organized in an inheritance hierarchy, in
which a subclass is a specialization of its superclass.
Although we deal here for simplicity only with simple
inheritance i.e. a class can have at most one superclass,
moving to multiple inheritance would not affect the
fragmentation algorithms in any way, as long as the
inheritance conflicts are dealt with into the data model.
Association between an object and a class is materialized
by the instantiation operation. An object O is an instance
of a class C if C is the most specialized class associated
with O in the inheritance hierarchy. An object O is member
of a class C if O is instance of C or of one of the
subclasses of C. An OODB is a set of classes from an
inheritance hierarchy, with all their instances. There is a
special class Root that is the ancestor of all classes in the
database. Thus, in our model, the inheritance graph is a

tree.

Basic Concepts

An entry point into a database is a metaclass instance

bound to a known variable in the system. An entry point
allows navigation from it to all classes and class instances
of its subtree (including itself). There are usually more
entry points in an object database.

Given a complex hierarchy H, a path expression P is
defined as C1.A1. …An, n≥1 where: C1 is an entry point in
H, A1 is an attribute of class C1, Ai is an attribute of class Ci
in H such that Ci is the domain of attribute Ai-1 of class Ci-1

(1≤ i ≤ n). In our case path expressions always have a
length of one and are entry points.

In general a query is a tuple with the following structure
q=(Target class, Range source, Qualification clause),
where:
� Target class – (query operand) specifies the root

of the class hierarchy over which the query
returns its object instances.

� Range source – a path expression specifying the
source hierarchy.

� Qualification clause – logical expression over the
class attributes in conjunctive normal form. The
logical expression is constructed using simple
predicates: attribute θ value where θ ∈{<,>, ≤, ≥,
=, ≠}.

Let Q={q1 ,…, qt} be the set of all queries in respect to
which we want to perform the fragmentation. Let
Pred={p1, …, pq} be the set of all simple predicates Q is
defined on. Let Pred(C)={p∈Pred| p impose a condition to
an attribute of class C or on the parent class of C}.

Given two classes C and C’, where C’ is subclass of C,
Pred(C’)⊇Pred(C). Thus the set of predicates for class C’
comprises all the predicates directly imposed on attributes
of C’ and the predicates defined on attributes of its parent
class C and inherited from it. We model class predicates
this way in order to capture on subclasses the semantic of
queries defined on superclasses. For example, given the
hierarchy in Fig. 2, a condition “student.grade>5” imposed
on Student should normally be reflected on all instances of
Grad students as well (graduates are also students).

We construct the object-condition matrix for class C,
OCM(C) ={aij ,1≤ i ≤|Inst(C)|, 1≤ j ≤|Pred(C)|}, where
Inst(C) = {O1, … Om} is the set of all instances of class
C, Pred(C) = {p1, …, pn}:

⎪⎩

⎪
⎨
⎧

=

=
=

trueOpif

falseOpif
a

ij

ij
ij)(,1

)(,0
 (1)

Each line i in OCM(C) is the object-condition vector of
Oi, where Oi∈Inst(C).

We obtain from OCM(C) the characteristic vectors for
all instances of C. The characteristic vector for object Oi is
wi = (wi1, wi2, …, win), where

m

a

w ijlj aanl
lj

ij

∑
==

=
,..1

(2)

each wij is the ratio between the number of objects in C
respecting the predicate pj∈Pred(C) in the same way as Oi
and the number of objects in C. We denote the
characteristic vector matrix as CVM(C).

Over the set of characteristic vectors associated to all
C’s instances we define several pseudo-metrics:

() ()∑∑

∑

==

=

×

×

=
n

k
jk

n

k
ik

jk

n

k
ik

ji

ww

ww

wwcos

1

2

1

2

1),((3)

∑
=

−=
n

k
jkikjiM wwwwd

1
),((4)

DM is the Manhattan distance as defined in [3]. This
distance can be calculated on characteristic vectors, as well
as on object-condition vectors. Cosine distance can only be
applied to characteristic vectors. Given two objects Oi and
Oj, we define two similarity measures between them as
follows:

),cos(),(cos jiji wwOOsim = (5)

)(

),(
1),(

CInst

wwd
OOsim jiM

jiM −= (6)

According to the cosine similarity, two objects are more
similar as the angle between their characteristic vectors is
smaller, i.e. tends to zero. We should note that all
characteristic vectors have positive coordinates by
definition. As the angle between two vectors is smaller,
their components tend to become similar. Translated in
object-conditions terms this means that the two compared
objects respect the condition set in about the same way,
and they should be clustered together. According to the
Manhattan (city block) distance/measure two objects are
more similar as the component difference between the two
vectors is smaller.

III. THE K-MEANS CLUSTERING

FRAGMENTATION

The classical k-means algorithm takes the input

parameter k and partitions a set of m objects into k clusters
so that the resulting intra-cluster similarity is high but the

inter-cluster similarity is low. Cluster similarity is
measured in regard to the mean value of the objects in a
cluster, which can be viewed as the cluster’s center of
gravity (centroid). First, the k-means algorithm randomly
selects k of the objects, each of which initially represent a
cluster mean or center. For each of the remaining objects,
an object is assigned to the cluster to which is the most
similar, based on the distance between the object and the
cluster centroid. It then computes the new centroid for each
cluster and redistributes all objects according to the new
centroids. This process iterates until the criterion function
converges. The criterion tries to make the resulting k
clusters as compact and separate as possible.

dM(wi,wj) cos(wi,wj)

Oi
Oj Oi

Oj

Fig. 1. Geometrical interpretation for the cosine and manhattan
similiarities

Our version of the algorithm improves several aspects of
the original algorithm with regard to the semantic of object
fragmentation. First of all, we implement a variant where
we choose as initial centroids the most representative
objects in respect with fragmentation predicates, rather
than choosing them arbitrarily. At each iteration, if an
object should be placed in any of several clusters (same
similarity with the centroid), we choose the cluster to
which the object has maximum similarity with. We also
choose as criterion function the degree of
compactness/homogeneity H of all clusters. For a given
cluster F, this value is the difference between the
maximum and minimum similarity of all pairs of objects in
F.

MINSIMMAXSIMFH −=)(

},),(|),(max{ baFxFbabasimMAXSIM ≠∈=
},),(|),(min{ baFxFbabasimMINSIM ≠∈=

(7)

Algorithm k-meansFrag is
Input: Class C, Inst(C) to be fragmented, the similarity
function sim:Inst(C)xInst(C)→[0,1], m=|Inst(C)|, 1<k≤ m
desired number of fragments, OCM(C), CVM(C).
Output: The set of clusters F={F1,…,Ff}, where f ≤ k.
Begin
 Centr={c1,…,ck}=InitialCentroids(
 Inst(C),OCM(C),CVM(C),k
);
 F={Fi|Fi={ci}, ci∈Centr, i=1..k}; F’=∅;
 // initial object allocation to clusters
 For all objects Oi do
 Fcandidates={argmaxcentr(sim(Oi,cl),l=1..k))};
 Fu* =argmaxsim(sim(Oi,fc),fc∈Fcandidates);
 Fu*= Fu* ∪{Oi};
 End For;
 While F’<>F and H(F)<threshold_value do
 For all Fi∈F recalculate centroid ci;
 F’=F;
 For all objects Oi do
 Fcandidates={argmaxcentr(sim(Oi,cl),l=1..k))};(i)
 Fu* =argmaxsim(sim(Oi,Fc),Fc∈Fcandidates); (ii)

Root

Employee Student

Prof Researcher Staff UnderGrad Grad

Fig. 2. The database class hierarchy

 F’v=F’v-{Oi}, where Oi∈F’v;
 F’u* = F’u*∪{Oi};
 F’=F’-{F’l| F’l=∅}; // eliminate empty clusters
 End For;
 End While;
End.

Function InitialCentroids(Inst(C),OCM(C),CVM(C),k) is
Begin
 Centr=∅; n=|Pred(C)|;
 For i=1 to k do
 ci=argmin[dM(OCM(Oj),ui)], Oj∉Centr, i≤n; (iii)
 ci=argmin(sim(Oj,Centr)), Oj∉Centr, i>n; (iv)
 Centr=Centr∪{ci};
 End for;
 Return Centr;
End Function;

Function InitialCentroids chooses the initial centroids as

described above. In line (iii) ui is the identity vector of
degree i, which has 1 only on the ith position and 0 on the
other positions. Each ui represents the corresponding
predicate from Pred(C). Line (iii) chooses as centroid the
closest object to ui, i.e. the most representative object for
that predicate. We note that we can choose this way as
many centroids as the number of predicates in Pred(C). If
we need more clusters than |Pred(C)|, we choose as their
initial centroids the objects most dissimilar to the already
chosen centroids (line (iv)). We try this way to minimize
the impact of “losing” clusters in the following iterations.
This occurs when all objects in a cluster relocate to other
clusters because the initial centroid is not semantically
representative to our set of predicates.

We use in lines (i) and (ii) the similarity of an object Oi
with a cluster Fc, defined as:

c

Fa
i

ci F

aOsim

FOsim c

∑
∈=

),(

),((8)

IV. RESULTS AND EVALUATION

In this section we illustrate the experimental results

obtained by applying our fragmentation schemes on a test
object database. Given a set of queries, we first obtain the
horizontal fragments for the classes in the database;
afterwards we evaluate the quality and performance of the
fragmentation results. For evaluation we use a variant of
the Partition Evaluator as proposed by Chakravarthy in
[17] for vertical relational fragmentation.

The sample object database represents a reduced
university database. The inheritance hierarchy is given in
Fig. 2. The queries running on the classes of the database
are given bellow.

q1: This application retrieves all lecturers and teaching

assistants.
q1 = (Prof, Prof, Prof.position in (“lecturer”, “teaching
assistant”))

q2: This application retrieves all professors and assistant
professors.
q2 = (Prof, Prof, Prof.position=”professor” or
Prof.position=”assistant proffesor”)

q3: This application retrieves all researchers older than 30
years.
q3 = (Researcher, Researcher, Researcher.age≥30)

q4: This application retrieves all researchers having
published at least two papers.
q4 = (Researcher, Researcher,
Researcher.count(Reasercher.doc)≥2)

q5: This application retrieves all graduates with grades less
than 4 enrolled at the Computer Science departments.
q5 = (Grad, Grad, Grad.grade≤4 and Grad.dept like “CS*”)

q6: This application retrieves all graduates older than 30.
q6 = (Grad, Grad, Grad.age≥30)

We only give here the Grad and Researcher instances
for space and simplicity reasons.
Grad = {{a.Dept, a.Name, a.SSN, a.Born, a.Grade}, {m.age},
G1 {CSR, Bercea Mihai, 1801229203220, 29/12/1980, 8.76}
G2 {CSR, Bleza Ovidiu, 2850912244171, 03/09/1971, 3.00}
G3 {M, Caciula Anamaria, 2790429080061, 29/04/1979, 9.07}
G4 {SD, Catana Florin, 2850912244353, 01/01/1970, 3.00}
G5 {PC, Cerba Dan, 2850912244296, 24/02/1973, 7.00}
G6 {MI, Cigher Simona, 2800807125829, 07/08/1980, 9.06}
G7 {MI, Cindrea Ioana, 2800924060021, 24/09/1980, 3.00}
G8 {CSR, Cioara Danut, 1760829054671, 29/08/1976, 8.60}
G9 {MI, Cosma Maria, 2810320060017, 20/03/1981, 3.00}
G10 {CSR, Damian Mircea, 1750616323929, 22/09/1976, 3.00}
G11 {CSM, Dani Iosif, 1761203120669, 03/12/1976, 3.00}
G12 {CSM, Darvas Laszlo, 1810413055099, 13/04/1981, 3.00}
G13 {CSR, Duhanes Dan, 2850912244193, 01/01/1970, 3.00} }
Researcher = {{a.OrgUnit, a.Name, a.SSN, a.Born, a.Doc},
{m.age},
R1 {Algebra, Morar Oana, 2651005123456, 05/10/1973,
{T4,T18,T32}}
R2 {InfSyst, Cobarzan Claudiu, 1470120123456, 20/01/1979,
{}}
R3 {ProgrMeth, Grebla Horia, 1720501123456, 01/05/1979,
{T19,P20}}
R4 {InfSyst, Sterca Adrian, 1511123123456, 23/11/1971,
{P14,P31,P32}}
R5 {Calculus, Tofan Daniel, 1560404123456, 04/04/1976,
{T16,P32}}

R6 {InfSyst, Zeng Ioan, 1560331123456, 31/03/1972, {T17}} }

0

100

200

300

400

M1 M2 M3 M4 M5 M6

Grad
Prof
Researcher

PE
 v

al
ue

s

Fig. 3. Comparative quality measures for each class.

The fragments obtained for Grad using algorithm k-
meansFrag and cosine as similarity measure are: F1 =
{G5}, F2 = {G9, G7, G12, G11, G10}, F3 = {G6, G3, G1, G8},
F4 = {G4, G13, G2}

The fragments obtained for Researchers using algorithm
k-meansFrag and cosine as similarity measure are: F1 =
{R6, R2}, F2 = {R1, R3, R5, R4}

Using the given query access frequency and other input
data, the fragments above are allocated to four distributed
sites. We use a simple allocation scheme that assigns
fragments to the sites where they are most needed. Query
frequency is presented in TABLE 1.

TABLE 1. Access Frequencies of queries at distributed sites

freq(q,s) S1 S2 S3 S4 Class
q1 10 20 5 20 Prof
q2 0 10 5 25 Prof
q3 20 10 15 10 Researcher
q4 15 10 25 20 Researcher
q5 25 20 0 20 Grad
q6 30 25 20 10 Grad

First we qualitatively compare the cosine k-means (best

centroid choice) fragmentation with a fully replicated
database and a centralized database allocated on one of the
sites.

TABLE 2. Allocation of Fragments to Distributed Sites

Class S1 S2 S3 S4
Grad F3,F4 F2 F1
Prof F3 F1 F2

Researcher F1,F2

The Partition Evaluator as proposed by Chakravarthy is

composed of two terms: the local irrelevant access cost
(EM) and the remote relevant access cost (ER). For a given
class C, the EM term computes the number of non-
accessed local fragment objects in all fragments, while the
ER term computes the number of remote objects accessed
by all queries running at each site.

TABLE 3. Fragmentation methods legend

M1 k-means cosine – random centroid choice (RCC)
M2 k-means cosine – best centroid choice (BCC)
M3 k-means Manhattan on object-conditions RCC
M4 k-means Manhattan on object-conditions BCC
M5 k-means Manhattan on charact. vectors RCC
M6 k-means Manhattan on charact. vectors BCC

PE(C) = EM2 + ER2 (9)

where:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗∗=∑∑

= = i

it
it

M

i

T

t
ts F

Acc
AccfreqCEM 1)(

1 1

22 (10)

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∗∗= ∑∑∑
= == i

it
S

s

M

i
itts

T

t F
Acc

AccfreqCER
1 1

2

1

2 min)((11)

In (10) s is the site where Fi is located, while in (11) s is

any site not containing Fi. M is the number of clusters for
class C, T is the number of queries and S is the number of
sites. Accit represents the set of objects accessed by the
query qt from the fragment Fi. The smaller PE is, better
fragmentation quality we have.

The test results show that our fragmentation performs
better in terms of PE than the centralized and fully
replicated cases.

Our variant for initial centroid choice leads to better

0

2,000

4,000

6,000

8,000

10,000

Grad Prof Researcher

Replicated
Centralized
k-means

PE
va

lu
es

Fig. 4. Comparative PE for k-means, full replication and centralized case.

13.64 13.64

110.86

63.6463.64

182.16

0

40

80

120

160

200

M1 M2 M3 M4 M5 M6

Fig. 5. Comparative PE values for our fragmentation methods.

fragmentation than the random centroid choice (M2, M4,
M6 are better than M1, M3, respectively M5) as shown in
Fig. 4 and Fig. 5.

When it comes to similarity measures, both cosine and
Manhattan distinguish objects that do not respect
predicates in the same way, but the differentiation
refinement has different granularity for each method. As a
consequence, resulting fragments are not always similar
for the same input data. Also, the experiments show that no
measure behaves optimally in all cases/classes. For
example, there are particular data distributions, with
perfectly separable clusters, where cosine measure is not
capable of distinguishing any clusters. We have identified
these particular cases and we are investigating solutions for
handling them. Fig. 5 presents the comparative global PE
values for all our methods. Globally the Manhattan
measure applied on object-conditions outperforms the
other measures.

V. CONCLUSIONS AND FUTURE WORK

In this work we prove that AI clustering methods can be

effectively used in object-oriented fragmentation and we
aim to extend the proposed approach to class models with
complex aggregation (association) hierarchies and complex
methods.

Currently, we are investigating new similarity measures
with improved discriminative power. We are also working
on alternative evaluation techniques for fragmentation
quality. We also think that we can use our clustering
methods to help solving dynamic fragmentation - by
capturing the semantic of potential future query changes
into the initial fragmentation, so that the fragments can be
adapted to those changes with smaller costs.

VI. REFERENCES

[1] K. Karlapalem, S. B. Navathe and M. M. A. Morsi,

“Issues in distribution design of object-oriented
databases”, in M. Tamer Ozsu, U. Dayal, P.
Valduriez, editors, Distributed Object Management,
Morgan Kaufmann Publishers, 1994, pp 148-164.

[2] C. I. Ezeife and K. Barker, “A Comprehensive
Approach to Horizontal Class Fragmentation in a
Distributed Object Based System”, in International
Journal of Distributed and Parallel Databases, 3(3),
1995, pp 247-272.

[3] J. Han, and M. Kamber, Data Mining: Concepts and
Techniques, The Morgan Kaufmann Series in Data
Management Systems, 2000.

[4] C. I. Ezeife and K. Barker, “Vertical Class
Fragmentation in a Distributed Object Based System”,
TechnicalReport 94-03, University of Manitoba,
Canada, 1994.

[5] K. Karlapalem and Q. Li, “Partitioning Schemes for
Object-Oriented Databases”, in Proceedings of the
Fifth International Workshop on Research Issues in
Data Engineering-Distributed Object Management,
Taiwan, 1995, pp 42–49.

[6] K. Karlapalem, Q. Li and S. Vieweg, “Method
Induced Partitioning Schemes in Object-Oriented
Databases”, in Proceedings of the 16th Int. Conf. on
Distributed Computing System (ICDCS’96), Hong

Kong, 1996, pp 377–384.
[7] S. Ravat, “La fragmentation d’un schema conceptuel

oriente objet”, in Ingenierie des systemes
d’information (ISI), 4(2), 1996, pp 161–193.

[8] C. I. Ezeife and K. Barker, “Horizontal Class
Fragmentation for Advanced-Object Modes in a
Distributed Object-Based System”, in Proceedings of
the 9th International Symposium on Computer and
Information Sciences, Antalya, Turkey, 1994, pp 25-
32.

[9] E. Bertino and L. Martino, Object-Oriented Database
Systems; Concepts and Architectures, Addison-
Wesley, 1993.

[10] L. Bellatreche, K. Karlapalem and A. Simonet,
“Horizontal Class Partitioning in Object-Oriented
Databases”, in Lecture Notes in Computer Science,
volume 1308, Toulouse, France, 1997, pp 58–67.

[11] M. Savonnet et. al., “Using Structural Schema
Information as Heuristics for Horizontal
Fragmentation of Object Classes in Distributed
OODB”, in Proc IX Int. Conf. on Parallel and
Distributed Computing Systems, France, 1996, pp
732-737.

[12] L. Bellatreche et. al., “Vertical Fragmentation in
Distributed Object Database Systems with Complex
Attributes and Methods”, in Proc. of the 7th Int.
Workshop on Database and Expert Systems
Applications, 1996, pp 15-21.

[13] E. Malinowski, Fragmentation Techniques for
Distributed Object-Oriented Databases, Thesis, Univ.
of Florida, 1996.

[14] F. Baiao and M. Mattoso, “A Mixed Fragmentation
Algorithm for Distributed Object Oriented
Databases”, in Proc. Of the 9th Int. Conf. on
Computing Information, Canada, 1998, pp 141-148.

[15] S. Ghandeharizadeh and D. Wilhite, “Placement of
Objects in Parallel Object-Based Systems”, Technical
Report 94-589, Department of Computer Science –
University of Southern California, 1994.

[16] M. Atkinson et. al., “The Object Oriented Database
Manifesto”, in Proc. of the 1st Int. Conf. on Deductive
and Object-Oriented Databases, 1989.

[17] S. Chakravarthy, J. Muthuraj, R. Varadarajan and S.
B. Navathe, “An Objective Function for Vertically
Partitioning Relations in Distributed Databases and its
Analysis”, in Distributed and Parallel Databases,
2(1), 1993, pp 183-207.

