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Abstract – Vertical and horizontal fragmentation are central 
issues in the design process of Distributed Object Based 
Systems. A good fragmentation scheme followed by an 
optimal allocation could greatly enhance performance in such 
systems, as data transfer between distributed sites is 
minimized. In this paper we present a horizontal 
fragmentation approach that uses the k-means AI clustering 
method for partitioning object instances into fragments. Our 
new method applies to existing databases, where statistics are 
already present. We model fragmentation input data in a 
vector space and give different object similarity measures 
together with their geometrical interpretations. We provide 
quality and performance evaluations using a partition 
evaluator function.  
 

I. INTRODUCTION 
 
Distributed Object Oriented databases aim to minimize 

performance costs that are incurred by inter-processor 
communication and data transfers by regrouping related 
objects into clusters to reduce the number of unnecessary 
accesses to irrelevant data and by dividing query 
executions over multiple processors of a network in order 
to achieve maximum parallelism. 

The distribution design of an Object Oriented Database 
(OODB) should handle data partitioning into a cohesive set 
of fragments, their assignment to local processing sites and 
the evaluation and fine-tuning for system performance. 
Minimizing data transfer has been already considered by 
almost all distribution techniques [1], either supporting 
complex characteristics of the object oriented model, or 
just flat data models. Recently these issues have been 
considered in ([4], [5], [6], [7], [2]). For fragmenting a 
class it is possible to use two basic techniques: vertical 
fragmentation and horizontal fragmentation. In an Object 
Oriented (OO) environment, horizontal fragmentation 
distributes class instances into fragments. Each object has 
the same structure and a different state or content. Thus, a 
horizontal fragment of a class contains a subset of the 
whole class extension. Horizontal fragmentation is usually 
subdivided in primary and derived fragmentation. On the 
other hand, the vertical fragmentation breaks the logical 
structure of the class: attributes and methods, and 
distributes them across the fragments. Each fragment 
contains, in this case, the same objects, but with different 
subsets of the attributes and methods [9]. 

We focus in this paper on horizontal object oriented 
fragmentation by using alternative methods to cluster 
objects into fragments. The OODB environment supports 
object oriented data models that are inherently more 
complex than the relational model. Features like 
encapsulation, inheritance, class aggregation hierarchy, 

and association relations complicate the definition of the 
horizontal class fragmentation. Different approaches have 
been identified in solving issues regarding fragmentation, 
which, to a large extent, aim to extend and develop the 
relational fragmentation and allocation techniques to 
OODBs. Research papers in the OO area claim that 
relational fragmentation methods can be applied to the 
object oriented data model to some extent [8], while others 
state that starting from relational fragmentation techniques 
brings a handicap, which is difficult to cover. 
 
Related Work 

 
Karlapalem identifies several issues and criteria for 

fragmenting distributed OODB horizontally and vertically 
[1]. Bellatreche et al. [10], Ezeife and Barker [2], Savonnet 
et. al. [11] propose algorithms for horizontal fragmentation 
of object classes. Vertical fragmentation is addressed by 
Bellatreche et. al. [12], Ezeife and Barker [4], Malinowski 
[13]. Mixed fragmentation is considered in [14] which 
starts from experimental results and propose a set of 
heuristics for mixed fragmentation. Ravat [7] proposes a 
mixed partitioning design approach using the Bond Energy 
Algorithm (BEA) for both horizontal and vertical object 
fragmentation. To group attributes, BEA uses attribute 
affinity measures, which represent the number of times two 
attributes are accessed together by a method. Predicate 
affinity measures are used in horizontal partitioning in 
order to evaluate the distance between two predicates. 
Ezeife uses minterm predicates identified in queries and 
object affinity measures with respect to these predicates to 
achieve primary and derived horizontal fragmentation. She 
defines fragmentation taxonomy that differentiates 
between classes with simple attributes/methods and 
complex attributes/methods. Savonnet et. al. present an OO 
distribution design methodology based on class 
dependency graph. They identify groups of co-referenced 
classes with respect to a set of methods for which parallel 
execution can be optimized. These groups of classes are 
partitioned together in fragments. Ghandeharizadeh and 
Wilhite [15] represent a database as a graph of objects. 
This graph is broken into subgraphs, which are allocated to 
nodes by means of a greedy object placement algorithm so 
that workload in the system meets imposed requirements. 
Some research papers present evaluation methodologies 
for fragmentation and/or allocation quality and system 
performance. 
 
Contributions 

 
We propose new techniques for horizontal 
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fragmentation in object-oriented databases with simple 
attributes and methods. They rely on AI non-supervised 
clustering techniques for partitioning classes into sets of 
similar instance objects, rather than following the 
traditional minimal predicate set method. We consider the 
k-means centroid based clustering method [3]. Although 
this is a well-known clustering technique, it has not been 
used yet in object-database fragmentation, to our 
knowledge.  

The algorithm groups objects together by their similarity 
with respect to a set of user queries with conditions 
imposed on data. Similarity (dissimilarity) between objects 
is defined in a vector space model and is computed using 
different metrics. As a result, we cluster objects that are 
highly used together by queries. 

In order to improve fragmentation quality, we propose 
several methods for choosing initial cluster centroids, 
according to queries semantic. 

The paper is organized as follows. The next section 
presents the object data model and the constructs used in 
defining the object database and expressing queries. It also 
introduces the vector space model we use to compare 
objects, methods for constructing the object characteristic 
vectors and similarity metrics over this vector space. 
Section 3 presents our fragmentation algorithm. In section 
4 we present a complete fragmentation example over a 
class hierarchy and we evaluate the quality of our 
fragmentation schemes by using a variant of the Partition 
Evaluator [17]. 
 

II. DATA MODEL 
 
We use an object-oriented model with the basic features 

described in the literature [9][16]. 
Object-oriented databases represent data entities as 

objects supporting features like inheritance, encapsulation, 
polymorphism, etc. Objects with common attributes and 
methods are grouped into classes. A class is an ordered 
tuple C=(K,A,M,I), where A is the set of object attributes, 
M is the set of methods, K is the class identifier and I is the 
set of instances of class C. We deal in this paper only with 
simple attributes and simple methods. Simple attributes 
have primitive data types as their domain. Simple methods 
access only attributes of their class. Every object in the 
database is uniquely identified by an OID. 

Each class can be seen in turn as a class object. Class 
objects are grouped together in metaclasses [9]. 

Classes are organized in an inheritance hierarchy, in 
which a subclass is a specialization of its superclass. 
Although we deal here for simplicity only with simple 
inheritance i.e. a class can have at most one superclass, 
moving to multiple inheritance would not affect the 
fragmentation algorithms in any way, as long as the 
inheritance conflicts are dealt with into the data model. 
Association between an object and a class is materialized 
by the instantiation operation. An object O is an instance 
of a class C if C is the most specialized class associated 
with O in the inheritance hierarchy. An object O is member 
of a class C if O is instance of C or of one of the 
subclasses of C. An OODB is a set of classes from an 
inheritance hierarchy, with all their instances. There is a 
special class Root that is the ancestor of all classes in the 
database. Thus, in our model, the inheritance graph is a 

tree. 
 

Basic Concepts 
 
An entry point into a database is a metaclass instance 

bound to a known variable in the system. An entry point 
allows navigation from it to all classes and class instances 
of its subtree (including itself). There are usually more 
entry points in an object database. 

Given a complex hierarchy H, a path expression P is 
defined as C1.A1. …An, n≥1 where: C1 is an entry point in 
H, A1 is an attribute of class C1, Ai is an attribute of class Ci 
in H such that Ci is the domain of attribute Ai-1 of class Ci-1 

(1≤ i ≤ n). In our case path expressions always have a 
length of one and are entry points. 

In general a query is a tuple with the following structure  
q=(Target class, Range source, Qualification clause), 
where: 
� Target class – (query operand) specifies the root 

of the class hierarchy over which the query 
returns its object instances. 

� Range source – a path expression specifying the 
source hierarchy. 

� Qualification clause – logical expression over the 
class attributes in conjunctive normal form. The 
logical expression is constructed using simple 
predicates: attribute θ  value where θ ∈{<,>, ≤, ≥, 
=, ≠}. 

Let Q={q1 ,…, qt} be the set of all queries in respect to 
which we want to perform the fragmentation. Let 
Pred={p1, …, pq} be the set of all simple predicates Q is 
defined on. Let Pred(C)={p∈Pred| p impose a condition to 
an attribute of class C or on the parent class of C}.  

Given two classes C and C’, where C’ is subclass of C, 
Pred(C’)⊇Pred(C). Thus the set of predicates for class C’ 
comprises all the predicates directly imposed on attributes 
of C’ and the predicates defined on attributes of its parent 
class C and inherited from it. We model class predicates 
this way in order to capture on subclasses the semantic of 
queries defined on superclasses. For example, given the 
hierarchy in Fig. 2, a condition “student.grade>5” imposed 
on Student should normally be reflected on all instances of 
Grad students as well (graduates are also students). 

We construct the object-condition matrix for class C, 
OCM(C) ={aij ,1≤ i ≤|Inst(C)|, 1≤ j ≤|Pred(C)|}, where 
Inst(C) = {O1, … Om} is the set of all instances of class 
C, Pred(C) = {p1, …, pn}: 
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Each line i in OCM(C) is the object-condition vector of 
Oi, where Oi∈Inst(C). 

We obtain from OCM(C) the characteristic vectors for 
all instances of C. The characteristic vector for object Oi is 
wi = (wi1, wi2, …, win), where 

m

a

w ijlj aanl
lj

ij

∑
==

=
,..1

 
(2) 

 



 
each wij is the ratio between the number of objects in C 
respecting the predicate pj∈Pred(C) in the same way as Oi 
and the number of objects in C. We denote the 
characteristic vector matrix as CVM(C). 

Over the set of characteristic vectors associated to all 
C’s instances we define several pseudo-metrics: 
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DM is the Manhattan distance as defined in [3]. This 
distance can be calculated on characteristic vectors, as well 
as on object-condition vectors. Cosine distance can only be 
applied to characteristic vectors. Given two objects Oi and 
Oj, we define two similarity measures between them as 
follows: 
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According to the cosine similarity, two objects are more 
similar as the angle between their characteristic vectors is 
smaller, i.e. tends to zero. We should note that all 
characteristic vectors have positive coordinates by 
definition. As the angle between two vectors is smaller, 
their components tend to become similar. Translated in 
object-conditions terms this means that the two compared 
objects respect the condition set in about the same way, 
and they should be clustered together. According to the 
Manhattan (city block) distance/measure two objects are 
more similar as the component difference between the two 
vectors is smaller.  

 
III. THE K-MEANS CLUSTERING 

FRAGMENTATION 
 
The classical k-means algorithm takes the input 

parameter k and partitions a set of m objects into k clusters 
so that the resulting intra-cluster similarity is high but the 

inter-cluster similarity is low. Cluster similarity is 
measured in regard to the mean value of the objects in a 
cluster, which can be viewed as the cluster’s center of 
gravity (centroid). First, the k-means algorithm randomly 
selects k of the objects, each of which initially represent a 
cluster mean or center. For each of the remaining objects, 
an object is assigned to the cluster to which is the most 
similar, based on the distance between the object and the 
cluster centroid. It then computes the new centroid for each 
cluster and redistributes all objects according to the new 
centroids. This process iterates until the criterion function 
converges. The criterion tries to make the resulting k 
clusters as compact and separate as possible.  

 

 

dM(wi,wj) cos(wi,wj) 

Oi
Oj Oi

Oj

Fig. 1. Geometrical interpretation for the cosine and manhattan 
similiarities 

Our version of the algorithm improves several aspects of 
the original algorithm with regard to the semantic of object 
fragmentation. First of all, we implement a variant where 
we choose as initial centroids the most representative 
objects in respect with fragmentation predicates, rather 
than choosing them arbitrarily. At each iteration, if an 
object should be placed in any of several clusters (same 
similarity with the centroid), we choose the cluster to 
which the object has maximum similarity with. We also 
choose as criterion function the degree of 
compactness/homogeneity H of all clusters. For a given 
cluster F, this value is the difference between the 
maximum and minimum similarity of all pairs of objects in 
F. 
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Algorithm k-meansFrag is 
Input: Class C, Inst(C) to be fragmented, the similarity 
function sim:Inst(C)xInst(C)→[0,1], m=|Inst(C)|, 1<k≤ m  
desired number of fragments, OCM(C), CVM(C). 
Output: The set of clusters F={F1,…,Ff}, where f ≤ k. 
Begin 
 Centr={c1,…,ck}=InitialCentroids( 
          Inst(C),OCM(C),CVM(C),k 
            ); 
 F={Fi|Fi={ci}, ci∈Centr, i=1..k}; F’=∅; 
 // initial object allocation to clusters 
 For all objects Oi do 
  Fcandidates={argmaxcentr(sim(Oi,cl),l=1..k))}; 
  Fu* =argmaxsim(sim(Oi,fc),fc∈Fcandidates); 
  Fu*= Fu* ∪{Oi}; 
 End For; 
 While F’<>F and H(F)<threshold_value do 
  For all Fi∈F recalculate centroid ci; 
  F’=F; 
  For all objects Oi do 
   Fcandidates={argmaxcentr(sim(Oi,cl),l=1..k))};(i) 
   Fu* =argmaxsim(sim(Oi,Fc),Fc∈Fcandidates);  (ii) 
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Fig. 2. The database class hierarchy 

   F’v=F’v-{Oi}, where Oi∈F’v; 
   F’u* = F’u*∪{Oi}; 
   F’=F’-{F’l| F’l=∅}; // eliminate empty clusters 
  End For; 
 End While; 
End. 
 
Function InitialCentroids(Inst(C),OCM(C),CVM(C),k) is 
Begin 
 Centr=∅; n=|Pred(C)|; 
 For i=1 to k do 
  ci=argmin[dM(OCM(Oj),ui)], Oj∉Centr, i≤n; (iii) 
  ci=argmin(sim(Oj,Centr)), Oj∉Centr, i>n; (iv) 
  Centr=Centr∪{ci}; 
 End for; 
 Return Centr; 
End Function; 

 
Function InitialCentroids chooses the initial centroids as 

described above. In line (iii) ui is the identity vector of 
degree i, which has 1 only on the ith position and 0 on the 
other positions. Each ui represents the corresponding 
predicate from Pred(C). Line (iii) chooses as centroid the 
closest object to ui, i.e. the most representative object for 
that predicate. We note that we can choose this way as 
many centroids as the number of predicates in Pred(C). If 
we need more clusters than |Pred(C)|, we choose as their 
initial centroids the objects most dissimilar to the already 
chosen centroids (line (iv)). We try this way to minimize 
the impact of  “losing” clusters in the following iterations. 
This occurs when all objects in a cluster relocate to other 
clusters because the initial centroid is not semantically 
representative to our set of predicates. 

We use in lines (i) and (ii) the similarity of an object Oi 
with a cluster Fc, defined as: 
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IV. RESULTS AND EVALUATION 

 
In this section we illustrate the experimental results 

obtained by applying our fragmentation schemes on a test 
object database. Given a set of queries, we first obtain the 
horizontal fragments for the classes in the database; 
afterwards we evaluate the quality and performance of the 
fragmentation results. For evaluation we use a variant of 
the Partition Evaluator as proposed by Chakravarthy in 
[17] for vertical relational fragmentation. 

The sample object database represents a reduced 
university database. The inheritance hierarchy is given in 
Fig. 2. The queries running on the classes of the database 
are given bellow. 
 
q1: This application retrieves all lecturers and teaching 

assistants. 
q1 = (Prof, Prof, Prof.position in (“lecturer”, “teaching 
assistant”) ) 
 
q2: This application retrieves all professors and assistant 
professors. 
q2 = (Prof, Prof, Prof.position=”professor” or  
Prof.position=”assistant proffesor”) 
 
q3: This application retrieves all researchers older than 30 
years. 
q3 = (Researcher, Researcher, Researcher.age≥30) 
 
q4: This application retrieves all researchers having 
published at least two papers. 
q4 = (Researcher, Researcher,  
Researcher.count(Reasercher.doc )≥2) 
 
q5: This application retrieves all graduates with grades less 
than 4 enrolled at the Computer Science departments. 
q5 = (Grad, Grad, Grad.grade≤4 and Grad.dept like “CS*”) 
 
q6: This application retrieves all graduates older than 30. 
q6 = (Grad, Grad, Grad.age≥30) 
 

We only give here the Grad and Researcher instances 
for space and simplicity reasons. 
Grad = {{a.Dept, a.Name, a.SSN, a.Born, a.Grade}, {m.age}, 
G1 {CSR, Bercea Mihai, 1801229203220, 29/12/1980, 8.76} 
G2 {CSR, Bleza Ovidiu, 2850912244171, 03/09/1971, 3.00} 
G3 {M, Caciula Anamaria, 2790429080061, 29/04/1979, 9.07} 
G4 {SD, Catana Florin, 2850912244353, 01/01/1970, 3.00} 
G5 {PC, Cerba Dan, 2850912244296, 24/02/1973, 7.00} 
G6 {MI, Cigher Simona, 2800807125829, 07/08/1980, 9.06} 
G7 {MI, Cindrea Ioana, 2800924060021, 24/09/1980, 3.00} 
G8 {CSR, Cioara Danut, 1760829054671, 29/08/1976, 8.60} 
G9 {MI, Cosma Maria, 2810320060017, 20/03/1981, 3.00} 
G10 {CSR, Damian Mircea, 1750616323929, 22/09/1976, 3.00} 
G11 {CSM, Dani Iosif, 1761203120669, 03/12/1976, 3.00} 
G12 {CSM, Darvas Laszlo, 1810413055099, 13/04/1981, 3.00} 
G13 {CSR, Duhanes Dan, 2850912244193, 01/01/1970, 3.00} } 
Researcher = {{a.OrgUnit, a.Name, a.SSN, a.Born, a.Doc}, 
{m.age}, 
R1 {Algebra, Morar Oana, 2651005123456, 05/10/1973, 
{T4,T18,T32}} 
R2 {InfSyst, Cobarzan Claudiu, 1470120123456, 20/01/1979, 
{}} 
R3 {ProgrMeth, Grebla Horia, 1720501123456, 01/05/1979, 
{T19,P20}} 
R4 {InfSyst, Sterca Adrian, 1511123123456, 23/11/1971, 
{P14,P31,P32}} 
R5 {Calculus, Tofan Daniel, 1560404123456, 04/04/1976, 
{T16,P32}} 

 

 



R6 {InfSyst, Zeng Ioan, 1560331123456, 31/03/1972, {T17}} } 
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Fig. 3. Comparative quality measures for each class. 

The fragments obtained for Grad using algorithm k-
meansFrag and cosine as similarity measure are: F1 = 
{G5}, F2 = {G9, G7, G12, G11, G10}, F3 = {G6, G3, G1, G8}, 
F4 = {G4, G13, G2} 

The fragments obtained for Researchers using algorithm 
k-meansFrag and cosine as similarity measure are: F1 = 
{R6, R2}, F2 = {R1, R3, R5, R4} 
 

Using the given query access frequency and other input 
data, the fragments above are allocated to four distributed 
sites. We use a simple allocation scheme that assigns 
fragments to the sites where they are most needed. Query 
frequency is presented in TABLE 1. 

TABLE 1. Access Frequencies of queries at distributed sites 

freq(q,s) S1 S2 S3 S4 Class 
q1 10 20 5 20 Prof 
q2 0 10 5 25 Prof 
q3 20 10 15 10 Researcher 
q4 15 10 25 20 Researcher 
q5 25 20 0 20 Grad 
q6 30 25 20 10 Grad 

 
First we qualitatively compare the cosine k-means (best 

centroid choice) fragmentation with a fully replicated 
database and a centralized database allocated on one of the 
sites. 

TABLE 2. Allocation of Fragments to Distributed Sites 

Class S1 S2 S3 S4 
Grad F3,F4 F2  F1
Prof F3  F1 F2

Researcher  F1,F2   
 
The Partition Evaluator as proposed by Chakravarthy is 

composed of two terms: the local irrelevant access cost 
(EM) and the remote relevant access cost (ER). For a given 
class C, the EM term computes the number of non-
accessed local fragment objects in all fragments, while the 
ER term computes the number of remote objects accessed 
by all queries running at each site.  

TABLE 3. Fragmentation methods legend 

M1 k-means cosine – random centroid choice (RCC) 
M2 k-means  cosine – best centroid choice (BCC) 
M3 k-means Manhattan on object-conditions RCC 
M4 k-means Manhattan on object-conditions BCC 
M5 k-means Manhattan on charact. vectors RCC 
M6 k-means Manhattan on charact. vectors BCC 

 

PE(C) = EM2 + ER2 (9) 

where: 
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In (10) s is the site where Fi is located, while in (11) s is 

any site not containing Fi. M is the number of clusters for 
class C, T is the number of queries and S is the number of 
sites. Accit represents the set of objects accessed by the 
query qt from the fragment Fi. The smaller PE is, better 
fragmentation quality we have. 

The test results show that our fragmentation performs 
better in terms of PE than the centralized and fully 
replicated cases. 

Our variant for initial centroid choice leads to better 
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Fig. 4. Comparative PE for k-means, full replication and centralized case.
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Fig. 5. Comparative PE values for our fragmentation methods. 

 



fragmentation than the random centroid choice (M2, M4, 
M6 are better than M1, M3, respectively M5) as shown in 
Fig. 4 and Fig. 5.  

When it comes to similarity measures, both cosine and 
Manhattan distinguish objects that do not respect 
predicates in the same way, but the differentiation 
refinement has different granularity for each method. As a 
consequence, resulting fragments are not always similar 
for the same input data. Also, the experiments show that no 
measure behaves optimally in all cases/classes. For 
example, there are particular data distributions, with 
perfectly separable clusters, where cosine measure is not 
capable of distinguishing any clusters. We have identified 
these particular cases and we are investigating solutions for 
handling them. Fig. 5 presents the comparative global PE 
values for all our methods. Globally the Manhattan 
measure applied on object-conditions outperforms the 
other measures. 

 
V. CONCLUSIONS AND FUTURE WORK 

 
In this work we prove that AI clustering methods can be 

effectively used in object-oriented fragmentation and we 
aim to extend the proposed approach to class models with 
complex aggregation (association) hierarchies and complex 
methods.  

Currently, we are investigating new similarity measures 
with improved discriminative power. We are also working 
on alternative evaluation techniques for fragmentation 
quality. We also think that we can use our clustering 
methods to help solving dynamic fragmentation - by 
capturing the semantic of potential future query changes 
into the initial fragmentation, so that the fragments can be 
adapted to those changes with smaller costs. 
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