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Abstract: - Class fragmentation is an essential phase in the design of Distributed Object Oriented Databases 
(DOODB). Due to their semantic similarity with the purpose of database fragmentation (obtaining sets of 
similar objects with respect to the user applications running in the system), clustering algorithms have recently 
begun to be investigated in the process of database fragmentation. This work proposes a study on the impact of 
different similarity measures applied in hierarchical agglomerative clustering algorithms for horizontal 
fragmentation of classes with complex attributes. This study would eventually help finding formal, automatic, 
approaches in choosing a particular similarity measure in accordance with: the applied clustering algorithm, the 
structure of the database inheritance/aggregation hierarchies, the semantics of data, etc. 

 
Key-Words: - Distributed database design, horizontal fragmentation, data mining methods, performance 
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1   Introduction*

As opposed to centralized databases where the 
design phase handles only logical and physical data 
modeling, the design process in Distributed Object 
Oriented Databases involves both data partitioning 
and allocation to the nodes of the system. This 
process is usually called database fragmentation 
and is an important aspect of distributed database 
design. Horizontal fragmentation, in Object 
Oriented Database Systems, distributes class 
instances into fragments. Each object in every 
fragment has the same structure and a different state 
or content. Thus, a horizontal fragment of a class 
contains a subset of the whole class extension. 

Most of the existing Object Oriented (OO) 
fragmentation approaches are usually inspired from 
the relational fragmentation techniques. The 
accumulated experience in the relational field has 
already helped developing the first techniques in 
object oriented data models. While this proves to be 
a good starting point for approaching the 
fragmentation problem, there is definitely a limit in 
applying these techniques to data models featuring 
all the complex characteristics of a real OO model. 

As a result, new approaches for OO database 
fragmentation are emerging. While some of them 
are based on graph theory, others use clustering 
techniques for splitting the classes and their 
extensions into fragments.  

Some of the proposed techniques use data 
mining clustering algorithms for data fragmentation. 
Clustering algorithms are not only used in OO 
database fragmentation but also for optimizing 
object storage and retrieval. Clustering similar 
objects closely on disk pages helps faster data 
retrieval and easier navigation in the aggregation 
and inheritance hierarchies when accessing related 
objects.  

In [11, 12, 13, 14] we have proposed some new 
database fragmentation techniques based on data 
mining methods, using clustering algorithms. 
Basically two major techniques are presented in 
these works: a hierarchical clustering algorithm and 
a k-means clustering algorithm. Both algorithms are 
applied in the context of horizontal fragmentation 
and partition data according to the similarity 
between objects. Two objects are similar when they 
are accessed in the same way by queries - they 
behave in the same way when running queries 
against the database. The resulting clusters finally 
form the database fragments.  

Essentially, the algorithms group objects together 
by their similarity with respect to a set of user 
queries with conditions imposed on data. Similarity 
(dissimilarity) between objects is defined in a vector 
space model and is computed using different 
metrics. As a result, objects that are highly used 
together by queries are placed in the same fragment. 



This paper presents an important aspect of the 
fragmentation by clustering methods – the 
significance of the similarity measures and its 
impact on the performance of the resulting database 
schema. The study is performed on complex class 
hierarchies (complex attributes and methods) and 
compares the performance influence of similarity 
measures. 

The paper is organized as follows. The next 
section briefly presents some related work handling 
horizontal data fragmentation in object oriented 
databases followed by the motivation to this work. 
Section 2 presents the data model. Section 3 
presents our numerical database model and the way 
it captures objects and their relations. Section 4 
briefly presents the hierarchical clustering algorithm 
studied in this work and section 5 presents the 
comparative results.  
 

 
1.1   Related Work 
Fragmentation methods for OODB environments, or 
flat data models have been generally considered in 
Karlapalem [2], Ezeife [3], Karlapalem [4][5]. 
Ravat [6] uses the Bond Energy Algorithm (BEA) 
for vertical and horizontal fragmentation. Ezeife [7] 
presents a set of algorithms for horizontally 
fragmenting models with simple attributes/methods 
and complex attributes/methods. Bellatreche et al. 
[8] propose a method that emphasizes the role of 
queries in the horizontal fragmentation.[11] presents 
a first fragmentation approach based on hierarchical 
agglomerative clustering while in [13] the original 
problem modeling is improved so that complex 
class hierarchies could be taken in account. 
 
 
1.2   Contributions 
Clustering fragmentation methods in complex class 
hierarchies proposed in earlier papers are generally 
based on similarity measures used to determine the 
similarity between different instances of the same 
class. Based on this similarity, objects are grouped 
into clusters (fragments). This work proposes a 
comparative study on the influence of different 
choices of similarity measures on the performance 
and quality of the obtained fragmentation. The 
behavior of clustering algorithms is not generally 
stable. Special patterns of data combined with 
different similarity measures give totally different 
performance and quality results. Our aim is to find a 
formal or automatic way of choosing the best 
similarity measure for each data fragmentation 
context for a given algorithm. The comparative 

study reveals the major properties for each 
similarity measure and will provide deeper 
knowledge on the best similarity measure choice. 
 
 
2   Data Model 
The used object-oriented model is one with the basic 
features as described in the literature [11]. Objects 
with common attributes and methods are grouped 
into classes. A class is an ordered tuple 
C=(K,A,M,I), where A is the set of object attributes, 
M is the set of methods, K is the class identifier and 
I is the set of instances of class C. Every object in 
the database is uniquely identified by an OID. 
Classes are organized in an inheritance hierarchy, in 
which a subclass is a specialization of its superclass. 
An OODB is a set of classes from an inheritance 
hierarchy, with all their instances. There is a special 
class Root that is the ancestor of all classes in the 
database.  

An entry point into a database is a meta-class 
instance bound to a known variable in the system. 
An entry point allows navigation from it to all 
classes and class instances of its sub-tree (including 
itself). There are usually more entry points in an 
OODB.  

Given a complex hierarchy H, a path expression 
P is defined as C1.A1. …An, n≥1 where: C1 is an 
entry point in H, A1 is an attribute of class C1, Ai is 
an attribute of class Ci in H such that Ci is the 
domain of attribute Ai-1 of class Ci-1(1≤ i ≤ n). In the 
general case, Ai can be a method call. If i<n, then Ai 
must return a single complex type value (an object). 
 
 
3   Vector Space Modeling 
Let Q={q1 ,…, qt} be the set of all queries in respect 
to which we want to perform the fragmentation. Let 
Pred={p1, …, pq} be the set of all atomic predicates 
Q is defined on. Let Pred(C)={p∈Pred| p imposes a 
condition to an attribute of class C or to an attribute 
of its parent}. Given the predicate p ≡ C1.A1. …An θ 
value, then p∈Pred(Cn) if class Ci is the complex 
domain of  Ai-1, i=1..n, and An has a complex type or 
simple type. 

Given two classes C and C’, where C’ is subclass 
of C, Pred(C’)⊇Pred(C). The reason behind this 
fact is explained in [11]. 

We construct the object-condition matrix for 
class C, OCM(C) = {aij ,1≤ i ≤|Inst(C)|, 1≤ j 
≤|Pred(C)|}, where Inst(C) = {O1, … Om} is the set 
of all instances of class C, Pred(C) = {p1, …, pn}: 
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Each line i in OCM(C) is the object-condition vector 
of Oi, where Oi∈Inst(C). OCM(C) is used then to 
obtain the characteristic vectors for all instances of 
C. The characteristic vector for object Oi is wi = 
(wi1, wi2, …, win), where each wij is the ratio between 
the number of objects in C respecting the predicate 
pj∈Pred(C) in the same way as Oi and the number 
of objects in C. We denote the characteristic vector 
matrix as CVM(C) [11]. 
 
 
3.1 Derived Fragmentation Modeling 
All characteristics of simple attributes and methods 
have been captured so far. The next part focuses on 
the class relationships in our vector space model. 
We first model the aggregation and association 
relations.  

Given two classes CO (owner) and CM (member), 
where CM is the domain of an attribute of CO, a path 
expression traversing this link navigates from 
instances of CO to one or more instances of CM. 
When fragmenting CO we should take in account the 
fragmentation of CM. 

Let {F1, …Fk} be the fragments of CM. Let 
Agg(Oi, Fj)={Om | Om∈Fj, Oi aggregates Om }.  
Given the set of fragments for CM, the attribute-link 
induced object-condition vectors for derived 
fragmentation are defined as adi = (adi1, adi2, … , 
adik), where each vector component is expressed by 
the following formula: 

( )),(sgn jiij FOAggad =     (2) 

For an object Oi∈Inst(CO) and a fragment Fj of CM, 
adij is 1 if Oi is linked to at least one object of Fj and 
is 0 otherwise. 

Given the set of fragments for CM, the attribute-
link induced characteristic vectors for derived 
fragmentation are defined as wdi = (wdi1, wdi2, … , 
wdik), where each vector component is expressed by 
one of the following formulas (two alternatives): 
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wd1
ij gives the ratio between the number of objects 

in fragment Fj of class CM linked to Oi and the 
number of all objects in fragment Fj linked to 
instances of CO. Each wd2

ij component gives the 
percentage of objects in CO that aggregate in the 
same way as Oi objects from Fj. Two objects Oi and 
Ol are said to aggregate in the same way Fj if they 
are both either linked or not linked with objects 
from Fj. According to the second criteria, two 
objects are candidate to be placed in the same 
fragment of CO in respect to Fj if they are both 
related in the same way to Fj. 

Usually, the fragmentation of a class CO is 
performed in two steps: primary fragmentation, 
according to query conditions, and derived 
fragmentation, according to the fragments of the 
member or owner classes. In our case the phases are 
merged into one single step capturing the semantic 
of both primary and derived fragmentations. For this 
we unify the characteristic vector and the attribute-
link induced characteristic vectors for each object Oi 
of the class CO and obtain the extended 
characteristic vector.  

If the class CO is linked with classes CM1 ,CM2 
,…CMp, the extended characteristic vector wei for 
object Oi ∈ Inst(CO) is obtained by appending the 
attribute-link induced characteristic vectors of 
CM1,CM2 ,…,CMp to the characteristic vector of Oi. 

The extended object-condition vector aei for an 
object Oi is obtained in the same way by appending 
its attribute-link induced object-condition vectors to 
its object-condition vector. 
Let EOCM(C) and ECVM(C) be the extended 
object-condition and characteristic matrices for class 
C.
 
 
3.2 Similarity between objects 
The aim of our method is to group into a cluster 
those objects that are similar to one another. 
Similarity between objects is computed using the 
following pseudo-metrics: 
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Given two objects Oi and Oj, we define the 
following similarity measures between them in (8): 
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Fig 1 presents the geometrical interpretation of the 
three similarity measures. SimE and simM are based 
on distance measures (Euclidian and Manhattan), 
while the third one (simcos) is the cosine of the angle 
between the two associated vectors. We expect the 
measures based on the 2 distances to generally 
capture the similarity from a distance point of view: 
as objects get closer they are more similar. The 
cosine similarity takes in account only the angle 
between the support vectors. Two objects are similar 
as their support vectors tend to have the same angle. 
It doesn’t take in account the spread of the objects 
on the same support axis. 
 
 

dM(wi,wj) 

cos(wi,wj) 

O i 
O j 

O i 
O j 

dE(wi,wj) 

O i Oj 

(a) (b) 

(c)  
Fig. 1 – Geometrical interpretation of similarity 

functions for 2-dimensions.objects. 
 
The cosine similarity is not defined for any two 
object-condition vectors. For extended vectors that 
have all components zero the cosine similarity 
measure is not defined. On the other side having all 
components zero means that the corresponding 
object is not referred by any application, so its 
resemblance with other objects is not significant in 
the fragmentation process in this case. It should be 
noted that all characteristic vectors have positive 
coordinates by definition. 
 

 
4   The Hierarchical Agglomerative 
Fragmentation 
The algorithm presented here is similar to the one in 
[11] and performs horizontal fragmentation on 
complex class hierarchies using the numerical 
database model presented above. 
 
Algorithm HierachicalAggFrag is  
Input: Class C, Inst(C) to be 
fragmented, the similarity function 
sim:Inst(C)xInst(C)-[0,1], 
m=|Inst(C)|, 1<k≤ m  desired number of 

ts, EOCM(C), ECVM(C). fragmen
Output: The set of hierarchical 
clusters F={F1,…,Fk}  
Begin 
  For i=1 To Inst(C) do Fi={Oi}; 
  F={F1,…,Fm}; 
  While |F|>k do 
    (Fu*,Fv*):=argmax(Fu,Fv)[sim(Fu,Fv)]; 
    Fnew=Fu*∪Fv*; 
    F=F-{Fu*,Fv*}∪{Fnew}; 
   
End. 

 End While; 

 
At each iteration the algorithm chooses the two most 
similar clusters and merges them into a single 
cluster (argmax(Fu,Fv)[sim(Fu,Fv)]). As similarity 
between two clusters Fu and Fv, the average 
similarity of all pairs of objects is considered: 
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The algorithm always ends up with k clusters 
representing the class fragments. 
 
 
5   Results and Evaluation 
This section illustrates the experimental results 
obtained by applying our fragmentation schemes on 
real and test object databases. Given a set of queries, 
we first obtain the horizontal fragments for the 
classes in the database; afterwards we evaluate the 
quality and performance of the fragmentation 
results. It should be noted that the order in which 
classes are fragmented is significant as it captures 
the semantic of query path expressions into the 
fragmentation process [12]. 

The sample object database in Fig. 2 represents a 
reduced university database. This is just an example 
reduced database for practically presenting the 



average results obtained by running the algorithms 
on real and test databases.  The inheritance 
hierarchy is shown in Fig. 2. It represents the 
average results obtained during our tests. 
 

Root 

Employee Student 

Prof Researcher Staff UnderGrad Grad 

Dept OrgUnit Faculty Doc 

TechReport Paper 

 
Fig. 2 – An example of a test database inheritance 

 
Each measurement considers a set of applications 
running on the database. They are given in [11, 12, 
13, 14]  

For measuring the fragmentation quality we use 
the partition evaluator function presented in [13]. 
The cost formulas are: 
PE(C) = EM2 + ER2                (10) 
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As explained in [11], the EM term calculates the 
local access cost, while ER calculates the remote 
relevant access cost for all fragments of a class.  

The fragmentation is better when the local 
(irrelevant) costs and the remote relevant access 
costs are smaller. Globally, PE measures how well 
fragments fit the object sets requested by queries. 
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Fig. 3 Comparative PE costs for variant M1 on all 

classes. 

Using the given query access frequency and other 
input data, the fragments above are allocated to N 
distributed sites. The presented method uses a 
simple allocation scheme that assigns fragments to 
sites where they are most needed.  

In Fig. 3. and Fig. 4, M1 conforms to eqn (3) 
while M2 conforms to eqn (4) for expressing 
derived fragmentation. Classes are represented in 
each figure in the order they have been fragmented 
(from left to right). In each figure we compare the 
PE values on each fragmented class. It can be seen 
that all measures perform in about the same way for 
the first classes, even though the composition of 
resulting clusters is sometimes different. Classes 
have been fragmented in the same order for both M1 
and M2. As we approach the right side of each 
figure we can see that the different composition of 
clusters of the already fragmented classes influences 
the resulting fragments (class Undergrad for 
example). This leads to a more clear separation in 
the induced PE costs for the Undergrad class for 
each similarity measure. It can be seen that the 
Euclidian similarity has an overall best place, as it 
obtains the smaller costs. The next measure in terms 
of performance is Manhattan applied on object-
condition vectors (Manhattan ObCond). It can also 
be seen that generally the M2 method behaves better 
than M1 in terms of costs. The cosine (COS) 
similarity has generally the worst results. There are, 
however, particular situations where it outperforms 
the other similarity measures. Manhattan similarity 
applied on characteristic vectors (ManhattanVC) has 
in almost all cases an average behaviour.  

The first conclusion that can be drawn from the 
above is that besides similarity measures, the length 
of dependency cycles in the aggregation hierarchy 
greatly influences the fragmentation results. 
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Fig. 4 - Comparative PE costs for variant M2 on all 

classes. 



Overall best result is always achieved either with 
Euclidian similarity or Manhattan applied on object 
condition vectors. The best individual results, when 
combined with both vector construction methods 
(M1 and M2) are obtained generally by the 
Euclidian measure. 

As the dependency chain is longer – i.e. the number 
of classes to be fragmented is higher – the small 
placement errors of objects in clusters tend to have a 
negative influence on the fragmentation of the 
classes at the end of the dependency chain. As long 
as the dependency chains are very short the choice 
of the similarity measure is insignificant. On the second place comes the Manhattan 

measure applied on object condition vectors. In this 
case the method for vectors construction has no 
influence whatsoever on the final results. It should 
be noted that Manhattan on object condition vectors 
always obtains good results – or even close to the 
optimal ones. The process of constructing the vector 
space is less elaborate than in the other cases 
because only qualitative information is managed. 
There is no explicit quantitative information about 
the way objects are inter-related. The quantitative 
information is automatically inferred by the 
algorithm through the similarity measure. The 
Manhattan similarity applied on object condition 
vectors is a good candidate for all cases where there 
is no prior knowledge on the generated vector data 
distribution.  

In Fig.5 and Fig. 6 we show the overall results of 
primary-only and complex (primary+derived) class 
fragmentation for all classes and for both ways of 
constructing the extended characteristic matrixes. 
The left side of both figures contains the results of 
fragmentation in complex class hierarchies, while 
the right side displays the results of primary-only 
fragmentation for each similarity measure (P-COS, 
P-Euclid, P-ManhattanVC). Both figures show that 
for the primary-only fragmentation case the choice 
of the similarity measure doesn’t affect much the 
resulting fragments. All similarity measures obtain 
similar costs, leading to the idea that they have an 
equal clustering power.  

As seen in Fig.5 and Fig. 6 and as it has already 
been noted in [13], the results of primary+derived 
fragmentation are always better than primary-only 
fragmentation. This means that the disseminative 
power of the three similarity measures is not 
particularly influenced by the type of fragmentation: 
primary-only or primary+derived. In other words, 
the Euclidian measure would not behave better just 
because it is used in the context of primary-only 
fragmentation or primary+derived fragmentation, 
compared to the other similarity measures. Both 
figures show that the best result is obtained by the 
Euclidian measure (fig 6).  

The cosine measure shows an important 
dependence on the construction of the extended 
characteristic matrixes for derived fragmentation. It 
performs poorly for method M1 and quite well for 
method M2. It should be noted though that the 
cosine similarity cannot always be successfully 
applied in practice as it depends on the values of the 
individual components of the vectors. As shown in 
[14] there are cases where sets of clearly delimited 
objects cannot be correctly clustered using this 
measure.  
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 Fig. 5 - PE values for M1 on complex class 
fragmentation and primary fragmentation. Fig. 6 PE values for M2 on complex class 

fragmentation and primary fragmentation.  
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Fig. 7 Comparative PE values for complex class fragmentation and primary fragmentation. 

 
Solutions have been proposed to correct this 

issue in [14]. On the other side, the Euclidian and 
Manhattan measures do not have this kind of 
degenerated behaviour. 

Fig 7 presents the comparative study for both 
methods of constructing vectors (M1 and M2) using 
the hierarchical clustering algorithm. On the right 
side of the figure there are also the results for the 
primary only fragmentation, centralized version of 
the database and the fully replicated architecture. 
Also we compare the results of the hierarchical 
clustering algorithm with the results obtained by 
applying the fragmentation scheme developed in 
[2](MinComplet_Ezeife). It can be seen that overall, 
the centralized and fully replicated databases obtain 
the worst results. This is due to low concurrency 
factor in the centralized case and to the high cost of 
managing fully replicated copies of all objects on all 
nodes of the system (in the case of full replication). , 
As already said, primary only fragmentation is not 
strongly influenced by the choice of the similarity 
measure and always obtains weaker results than 
complex class fragmentation. The best overall score 
and the best individual score (fixed choice of 
method + algorithm) show a promising 
improvement over the average scored obtained by 
the fragmentation method developed by Ezeife in 
[2] (MinComplet_Ezeife). This algorithm uses a 
technique adapted from relational database 
fragmentation and applies it to object schemas. 

Finally, it should be mentioned that the 

hierarchical agglomerative clustering method is 
characterized by the fact that once a step is done it 
can never be undone. This could help increase the 
gap between the results obtained by different 
similarity measures, while a more behaved 
clustering method that would allow correcting 
misplaced objects in the next few iterations is more 
likely to better reflect the real differences between 
similarities. 
 
 
6 Conclusions and Future Work 
This paper presents a comparative study of the 
influence of three similarity measures in the 
fragmentation process of an Object Oriented 
Database with complex class relationships, using a 
hierarchical agglomerative clustering algorithm. We 
show that the choice of different similarity measures 
influences the resulting fragmentation in a real 
database where the number of classes to fragment 
and the number of inter-class dependencies is likely 
to be important. Results on multiple database 
schemas show that the Euclidian and Manhattan (in 
some cases) similarity measure generally 
outperforms the other similarity measures. Our 
conclusions are based on initial suppositions that we 
support and confirm with experimental results. 
Given the empirical nature of proofs only by 
experiments, we aim to find formal, mathematical 
ways for proving the characteristics of different 
similarity measures applied in the fragmentation 



process using clustering techniques. This would 
help improve the positive impression gained by 
applying clustering methods in the horizontal 
fragmentation process of distributed databases. 

Last but not least, we show that using clustering 
algorithms for horizontal object database 
fragmentation proves to be a good choice when 
compared to other existing fragmentation methods. 
In this case all the similarity measures behave, when 
using hierarchical clustering, at least as well as other 
existing fragmentation algorithms. Generally the 
obtained results are better than with other existing 
algorithms. The choice for comparing with the 
algorithm developed in [2] was made because 
accurate fragmentation quality measurement was 
easier in this case. There is work in progress to 
assess the fragmentation quality for other 
fragmentation algorithms and compare it with those 
obtained by clustering. 

As a final conclusion, it should be noted that the 
choice of similarity measures when fragmenting 
database schemas by clustering is important. The 
fragmentation quality varies with the similarity 
measure. There are, however similarities that behave 
almost constantly on a wide range of input data. The 
Euclidian and Manhattan fall in this category and 
their results can be trusted as good in the majority of 
cases.  
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