
The Similarity Measures and their Impact on OODB Fragmentation
Using Hierarchical Clustering Algorithms

ADRIAN SERGIU DARABANT, HOREA TODORAN, OCTAVIAN CRET, GEORGE CHIS

Dept. of Computer Science
Babes Bolyai University, Technical University

1, Kogalniceanu and 15 C-tin Daicoviciu, Cluj Napoca,
ROMANIA

dadi@cs.ubbcluj.ro, htodoran@euro.ubbcluj.ro, cret@cs.utcluj.ro, gchis@econ.ubbcluj.ro,
http://www.cs.ubbcluj.ro

Abstract: - Class fragmentation is an essential phase in the design of Distributed Object Oriented Databases
(DOODB). Due to their semantic similarity with the purpose of database fragmentation (obtaining sets of
similar objects with respect to the user applications running in the system), clustering algorithms have recently
begun to be investigated in the process of database fragmentation. This work proposes a study on the impact of
different similarity measures applied in hierarchical agglomerative clustering algorithms for horizontal
fragmentation of classes with complex attributes. This study would eventually help finding formal, automatic,
approaches in choosing a particular similarity measure in accordance with: the applied clustering algorithm, the
structure of the database inheritance/aggregation hierarchies, the semantics of data, etc.

Key-Words: - Distributed database design, horizontal fragmentation, data mining methods, performance
evaluation.

1 Introduction*

As opposed to centralized databases where the
design phase handles only logical and physical data
modeling, the design process in Distributed Object
Oriented Databases involves both data partitioning
and allocation to the nodes of the system. This
process is usually called database fragmentation
and is an important aspect of distributed database
design. Horizontal fragmentation, in Object
Oriented Database Systems, distributes class
instances into fragments. Each object in every
fragment has the same structure and a different state
or content. Thus, a horizontal fragment of a class
contains a subset of the whole class extension.

Most of the existing Object Oriented (OO)
fragmentation approaches are usually inspired from
the relational fragmentation techniques. The
accumulated experience in the relational field has
already helped developing the first techniques in
object oriented data models. While this proves to be
a good starting point for approaching the
fragmentation problem, there is definitely a limit in
applying these techniques to data models featuring
all the complex characteristics of a real OO model.

As a result, new approaches for OO database
fragmentation are emerging. While some of them
are based on graph theory, others use clustering
techniques for splitting the classes and their
extensions into fragments.

Some of the proposed techniques use data
mining clustering algorithms for data fragmentation.
Clustering algorithms are not only used in OO
database fragmentation but also for optimizing
object storage and retrieval. Clustering similar
objects closely on disk pages helps faster data
retrieval and easier navigation in the aggregation
and inheritance hierarchies when accessing related
objects.

In [11, 12, 13, 14] we have proposed some new
database fragmentation techniques based on data
mining methods, using clustering algorithms.
Basically two major techniques are presented in
these works: a hierarchical clustering algorithm and
a k-means clustering algorithm. Both algorithms are
applied in the context of horizontal fragmentation
and partition data according to the similarity
between objects. Two objects are similar when they
are accessed in the same way by queries - they
behave in the same way when running queries
against the database. The resulting clusters finally
form the database fragments.

Essentially, the algorithms group objects together
by their similarity with respect to a set of user
queries with conditions imposed on data. Similarity
(dissimilarity) between objects is defined in a vector
space model and is computed using different
metrics. As a result, objects that are highly used
together by queries are placed in the same fragment.

This paper presents an important aspect of the
fragmentation by clustering methods – the
significance of the similarity measures and its
impact on the performance of the resulting database
schema. The study is performed on complex class
hierarchies (complex attributes and methods) and
compares the performance influence of similarity
measures.

The paper is organized as follows. The next
section briefly presents some related work handling
horizontal data fragmentation in object oriented
databases followed by the motivation to this work.
Section 2 presents the data model. Section 3
presents our numerical database model and the way
it captures objects and their relations. Section 4
briefly presents the hierarchical clustering algorithm
studied in this work and section 5 presents the
comparative results.

1.1 Related Work
Fragmentation methods for OODB environments, or
flat data models have been generally considered in
Karlapalem [2], Ezeife [3], Karlapalem [4][5].
Ravat [6] uses the Bond Energy Algorithm (BEA)
for vertical and horizontal fragmentation. Ezeife [7]
presents a set of algorithms for horizontally
fragmenting models with simple attributes/methods
and complex attributes/methods. Bellatreche et al.
[8] propose a method that emphasizes the role of
queries in the horizontal fragmentation.[11] presents
a first fragmentation approach based on hierarchical
agglomerative clustering while in [13] the original
problem modeling is improved so that complex
class hierarchies could be taken in account.

1.2 Contributions
Clustering fragmentation methods in complex class
hierarchies proposed in earlier papers are generally
based on similarity measures used to determine the
similarity between different instances of the same
class. Based on this similarity, objects are grouped
into clusters (fragments). This work proposes a
comparative study on the influence of different
choices of similarity measures on the performance
and quality of the obtained fragmentation. The
behavior of clustering algorithms is not generally
stable. Special patterns of data combined with
different similarity measures give totally different
performance and quality results. Our aim is to find a
formal or automatic way of choosing the best
similarity measure for each data fragmentation
context for a given algorithm. The comparative

study reveals the major properties for each
similarity measure and will provide deeper
knowledge on the best similarity measure choice.

2 Data Model
The used object-oriented model is one with the basic
features as described in the literature [11]. Objects
with common attributes and methods are grouped
into classes. A class is an ordered tuple
C=(K,A,M,I), where A is the set of object attributes,
M is the set of methods, K is the class identifier and
I is the set of instances of class C. Every object in
the database is uniquely identified by an OID.
Classes are organized in an inheritance hierarchy, in
which a subclass is a specialization of its superclass.
An OODB is a set of classes from an inheritance
hierarchy, with all their instances. There is a special
class Root that is the ancestor of all classes in the
database.

An entry point into a database is a meta-class
instance bound to a known variable in the system.
An entry point allows navigation from it to all
classes and class instances of its sub-tree (including
itself). There are usually more entry points in an
OODB.

Given a complex hierarchy H, a path expression
P is defined as C1.A1. …An, n≥1 where: C1 is an
entry point in H, A1 is an attribute of class C1, Ai is
an attribute of class Ci in H such that Ci is the
domain of attribute Ai-1 of class Ci-1(1≤ i ≤ n). In the
general case, Ai can be a method call. If i<n, then Ai
must return a single complex type value (an object).

3 Vector Space Modeling
Let Q={q1 ,…, qt} be the set of all queries in respect
to which we want to perform the fragmentation. Let
Pred={p1, …, pq} be the set of all atomic predicates
Q is defined on. Let Pred(C)={p∈Pred| p imposes a
condition to an attribute of class C or to an attribute
of its parent}. Given the predicate p ≡ C1.A1. …An θ
value, then p∈Pred(Cn) if class Ci is the complex
domain of Ai-1, i=1..n, and An has a complex type or
simple type.

Given two classes C and C’, where C’ is subclass
of C, Pred(C’)⊇Pred(C). The reason behind this
fact is explained in [11].

We construct the object-condition matrix for
class C, OCM(C) = {aij ,1≤ i ≤|Inst(C)|, 1≤ j
≤|Pred(C)|}, where Inst(C) = {O1, … Om} is the set
of all instances of class C, Pred(C) = {p1, …, pn}:

⎪⎩

⎪
⎨
⎧

=

=
=

trueOpif

falseOpif
a

ij

ij
ij)(,1

)(,0
 (1)

[]

njmi
m

aaaa

w

m

aal
ljljljlj

ij
ijlj

,1,,1

,

)0|)1(()0|(
,1

==

=−+>

=
∑

==
 (1’)

Each line i in OCM(C) is the object-condition vector
of Oi, where Oi∈Inst(C). OCM(C) is used then to
obtain the characteristic vectors for all instances of
C. The characteristic vector for object Oi is wi =
(wi1, wi2, …, win), where each wij is the ratio between
the number of objects in C respecting the predicate
pj∈Pred(C) in the same way as Oi and the number
of objects in C. We denote the characteristic vector
matrix as CVM(C) [11].

3.1 Derived Fragmentation Modeling
All characteristics of simple attributes and methods
have been captured so far. The next part focuses on
the class relationships in our vector space model.
We first model the aggregation and association
relations.

Given two classes CO (owner) and CM (member),
where CM is the domain of an attribute of CO, a path
expression traversing this link navigates from
instances of CO to one or more instances of CM.
When fragmenting CO we should take in account the
fragmentation of CM.

Let {F1, …Fk} be the fragments of CM. Let
Agg(Oi, Fj)={Om | Om∈Fj, Oi aggregates Om }.
Given the set of fragments for CM, the attribute-link
induced object-condition vectors for derived
fragmentation are defined as adi = (adi1, adi2, … ,
adik), where each vector component is expressed by
the following formula:

()),(sgn jiij FOAggad = (2)

For an object Oi∈Inst(CO) and a fragment Fj of CM,
adij is 1 if Oi is linked to at least one object of Fj and
is 0 otherwise.

Given the set of fragments for CM, the attribute-
link induced characteristic vectors for derived
fragmentation are defined as wdi = (wdi1, wdi2, … ,
wdik), where each vector component is expressed by
one of the following formulas (two alternatives):

U
)(

1

1

),(

),(

CInstO
jl

ji

l

ij

FOAgg

FOAgg
wd

∈

= (3)

() ()
)(

),(sgn),(sgn

|)(

1

1

2
CInst

FOAggFOAgg

CInstO

wd
jijl

l

ij

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

∈

= (4)

wd1
ij gives the ratio between the number of objects

in fragment Fj of class CM linked to Oi and the
number of all objects in fragment Fj linked to
instances of CO. Each wd2

ij component gives the
percentage of objects in CO that aggregate in the
same way as Oi objects from Fj. Two objects Oi and
Ol are said to aggregate in the same way Fj if they
are both either linked or not linked with objects
from Fj. According to the second criteria, two
objects are candidate to be placed in the same
fragment of CO in respect to Fj if they are both
related in the same way to Fj.

Usually, the fragmentation of a class CO is
performed in two steps: primary fragmentation,
according to query conditions, and derived
fragmentation, according to the fragments of the
member or owner classes. In our case the phases are
merged into one single step capturing the semantic
of both primary and derived fragmentations. For this
we unify the characteristic vector and the attribute-
link induced characteristic vectors for each object Oi
of the class CO and obtain the extended
characteristic vector.

If the class CO is linked with classes CM1 ,CM2
,…CMp, the extended characteristic vector wei for
object Oi ∈ Inst(CO) is obtained by appending the
attribute-link induced characteristic vectors of
CM1,CM2 ,…,CMp to the characteristic vector of Oi.

The extended object-condition vector aei for an
object Oi is obtained in the same way by appending
its attribute-link induced object-condition vectors to
its object-condition vector.
Let EOCM(C) and ECVM(C) be the extended
object-condition and characteristic matrices for class
C.

3.2 Similarity between objects
The aim of our method is to group into a cluster
those objects that are similar to one another.
Similarity between objects is computed using the
following pseudo-metrics:

() ()∑∑

∑

==

=

×

×

=
n

k
jk

n

k
ik

jk

n

k
ik

ji

wewe

wewe

wewe

1

2

1

2

1),cos((5)

∑
=

−=
n

k
jkikjiM weweweewd

1
),((6)

∑
=

−=
n

k
jkikjiE weweweewd

1

2)(),((7)

Given two objects Oi and Oj, we define the
following similarity measures between them in (8):

),cos(),(cos jiji weweOOsim =

)(
),(

1),(
CInst
wewed

OOsim jiM
jiM −= (8)

)(
),(

1),(
CInst
wewed

OOsim jiE
jiE −=

Fig 1 presents the geometrical interpretation of the
three similarity measures. SimE and simM are based
on distance measures (Euclidian and Manhattan),
while the third one (simcos) is the cosine of the angle
between the two associated vectors. We expect the
measures based on the 2 distances to generally
capture the similarity from a distance point of view:
as objects get closer they are more similar. The
cosine similarity takes in account only the angle
between the support vectors. Two objects are similar
as their support vectors tend to have the same angle.
It doesn’t take in account the spread of the objects
on the same support axis.

dM(wi,wj)

cos(wi,wj)

O i
O j

O i
O j

dE(wi,wj)

O i Oj

(a) (b)

(c)
Fig. 1 – Geometrical interpretation of similarity

functions for 2-dimensions.objects.

The cosine similarity is not defined for any two
object-condition vectors. For extended vectors that
have all components zero the cosine similarity
measure is not defined. On the other side having all
components zero means that the corresponding
object is not referred by any application, so its
resemblance with other objects is not significant in
the fragmentation process in this case. It should be
noted that all characteristic vectors have positive
coordinates by definition.

4 The Hierarchical Agglomerative
Fragmentation
The algorithm presented here is similar to the one in
[11] and performs horizontal fragmentation on
complex class hierarchies using the numerical
database model presented above.

Algorithm HierachicalAggFrag is
Input: Class C, Inst(C) to be
fragmented, the similarity function
sim:Inst(C)xInst(C)-[0,1],
m=|Inst(C)|, 1<k≤ m desired number of

ts, EOCM(C), ECVM(C). fragmen
Output: The set of hierarchical
clusters F={F1,…,Fk}
Begin
 For i=1 To Inst(C) do Fi={Oi};
 F={F1,…,Fm};
 While |F|>k do
 (Fu*,Fv*):=argmax(Fu,Fv)[sim(Fu,Fv)];
 Fnew=Fu*∪Fv*;
 F=F-{Fu*,Fv*}∪{Fnew};

End.

 End While;

At each iteration the algorithm chooses the two most
similar clusters and merges them into a single
cluster (argmax(Fu,Fv)[sim(Fu,Fv)]). As similarity
between two clusters Fu and Fv, the average
similarity of all pairs of objects is considered:

vu

Fa Fb
ji

vu FF

basim

FFsim ui vj

×
=

∑ ∑
∈ ∈

),(

),((9)

The algorithm always ends up with k clusters
representing the class fragments.

5 Results and Evaluation
This section illustrates the experimental results
obtained by applying our fragmentation schemes on
real and test object databases. Given a set of queries,
we first obtain the horizontal fragments for the
classes in the database; afterwards we evaluate the
quality and performance of the fragmentation
results. It should be noted that the order in which
classes are fragmented is significant as it captures
the semantic of query path expressions into the
fragmentation process [12].

The sample object database in Fig. 2 represents a
reduced university database. This is just an example
reduced database for practically presenting the

average results obtained by running the algorithms
on real and test databases. The inheritance
hierarchy is shown in Fig. 2. It represents the
average results obtained during our tests.

Root

Employee Student

Prof Researcher Staff UnderGrad Grad

Dept OrgUnit Faculty Doc

TechReport Paper

Fig. 2 – An example of a test database inheritance

Each measurement considers a set of applications
running on the database. They are given in [11, 12,
13, 14]

For measuring the fragmentation quality we use
the partition evaluator function presented in [13].
The cost formulas are:
PE(C) = EM2 + ER2 (10)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗∗= ∑∑

= = i

it
it

M

i

T

t
ts F

Acc
AccfreqCEM 1)(

1 1

22 (11)

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∗∗= ∑∑∑
= == i

it
S

s

M

i
itts

T

t F
Acc

AccfreqCER
1 1

2

1

2 min)((12)

As explained in [11], the EM term calculates the
local access cost, while ER calculates the remote
relevant access cost for all fragments of a class.

The fragmentation is better when the local
(irrelevant) costs and the remote relevant access
costs are smaller. Globally, PE measures how well
fragments fit the object sets requested by queries.

45
0 0 0

150

0

876

0 0
55

0 0 00 0 0

324

496

0
100
200
300
400
500
600
700
800
900

1000

D
ep

t

G
ra

d

O
rg

un
it

P
ro

f

R
es

ea
rc

he
r

S
ta

ff

U
nd

er
gr

ad

PE COS EUCLID
ManhattanVC Manhattan ObCond

Fig. 3 Comparative PE costs for variant M1 on all

classes.

Using the given query access frequency and other
input data, the fragments above are allocated to N
distributed sites. The presented method uses a
simple allocation scheme that assigns fragments to
sites where they are most needed.

In Fig. 3. and Fig. 4, M1 conforms to eqn (3)
while M2 conforms to eqn (4) for expressing
derived fragmentation. Classes are represented in
each figure in the order they have been fragmented
(from left to right). In each figure we compare the
PE values on each fragmented class. It can be seen
that all measures perform in about the same way for
the first classes, even though the composition of
resulting clusters is sometimes different. Classes
have been fragmented in the same order for both M1
and M2. As we approach the right side of each
figure we can see that the different composition of
clusters of the already fragmented classes influences
the resulting fragments (class Undergrad for
example). This leads to a more clear separation in
the induced PE costs for the Undergrad class for
each similarity measure. It can be seen that the
Euclidian similarity has an overall best place, as it
obtains the smaller costs. The next measure in terms
of performance is Manhattan applied on object-
condition vectors (Manhattan ObCond). It can also
be seen that generally the M2 method behaves better
than M1 in terms of costs. The cosine (COS)
similarity has generally the worst results. There are,
however, particular situations where it outperforms
the other similarity measures. Manhattan similarity
applied on characteristic vectors (ManhattanVC) has
in almost all cases an average behaviour.

The first conclusion that can be drawn from the
above is that besides similarity measures, the length
of dependency cycles in the aggregation hierarchy
greatly influences the fragmentation results.

80
0 0 0

265
150

55
0

876

0 0

496

0 0 0

324

0
100
200
300
400
500
600
700
800
900

1000

D
ep

t

G
ra

d

O
rg

un
it

Pr
of

R
es

ea
rc

he
r

St
af

f

U
nd

er
gr

ad

PE COS Euclid
ManhattanVC Manhattan ObCond

Fig. 4 - Comparative PE costs for variant M2 on all

classes.

Overall best result is always achieved either with
Euclidian similarity or Manhattan applied on object
condition vectors. The best individual results, when
combined with both vector construction methods
(M1 and M2) are obtained generally by the
Euclidian measure.

As the dependency chain is longer – i.e. the number
of classes to be fragmented is higher – the small
placement errors of objects in clusters tend to have a
negative influence on the fragmentation of the
classes at the end of the dependency chain. As long
as the dependency chains are very short the choice
of the similarity measure is insignificant. On the second place comes the Manhattan

measure applied on object condition vectors. In this
case the method for vectors construction has no
influence whatsoever on the final results. It should
be noted that Manhattan on object condition vectors
always obtains good results – or even close to the
optimal ones. The process of constructing the vector
space is less elaborate than in the other cases
because only qualitative information is managed.
There is no explicit quantitative information about
the way objects are inter-related. The quantitative
information is automatically inferred by the
algorithm through the similarity measure. The
Manhattan similarity applied on object condition
vectors is a good candidate for all cases where there
is no prior knowledge on the generated vector data
distribution.

In Fig.5 and Fig. 6 we show the overall results of
primary-only and complex (primary+derived) class
fragmentation for all classes and for both ways of
constructing the extended characteristic matrixes.
The left side of both figures contains the results of
fragmentation in complex class hierarchies, while
the right side displays the results of primary-only
fragmentation for each similarity measure (P-COS,
P-Euclid, P-ManhattanVC). Both figures show that
for the primary-only fragmentation case the choice
of the similarity measure doesn’t affect much the
resulting fragments. All similarity measures obtain
similar costs, leading to the idea that they have an
equal clustering power.

As seen in Fig.5 and Fig. 6 and as it has already
been noted in [13], the results of primary+derived
fragmentation are always better than primary-only
fragmentation. This means that the disseminative
power of the three similarity measures is not
particularly influenced by the type of fragmentation:
primary-only or primary+derived. In other words,
the Euclidian measure would not behave better just
because it is used in the context of primary-only
fragmentation or primary+derived fragmentation,
compared to the other similarity measures. Both
figures show that the best result is obtained by the
Euclidian measure (fig 6).

The cosine measure shows an important
dependence on the construction of the extended
characteristic matrixes for derived fragmentation. It
performs poorly for method M1 and quite well for
method M2. It should be noted though that the
cosine similarity cannot always be successfully
applied in practice as it depends on the values of the
individual components of the vectors. As shown in
[14] there are cases where sets of clearly delimited
objects cannot be correctly clustered using this
measure.

224 225 225
201

289 289 289

0

50

100

150

200

250

300

350

C
O

S

EU
C

LI
D

M
an

ha
tta

nV
C

M
an

ha
tta

n
O

bC
on

d

P-
C

O
S

P-
Eu

cl
id

P-
M

an
ha

tta
nV

C

PE

196 192

225
201

289 289 289

0

50

100

150

200

250

300

350

C
O

S

Eu
cl

id

M
an

ha
tta

nV
C

M
an

ha
tta

n
O

bC
on

d

P-
C

O
S

P-
Eu

cl
id

P-
M

an
ha

tta
nV

C

PE

 Fig. 5 - PE values for M1 on complex class
fragmentation and primary fragmentation. Fig. 6 PE values for M2 on complex class

fragmentation and primary fragmentation.

224 225 225
196 192

225
201

289 289 289
239

466

0
50

100
150
200
250
300
350
400
450
500

C
O

S-
M

1

EU
C

LI
D

-M
1

M
an

ha
tta

nV
C

-M
1

C
O

S-
M

2

Eu
cl

id
-M

2

M
an

ha
tta

nV
C

-M
2

M
an

ha
tta

n-
O

bC
on

d
M

1-
M

2

P-
C

O
S

P-
Eu

cl
id

P-
M

an
ha

tta
nV

C

M
in

C
om

pl
et

-E
ze

ife

C
en

tra
lis

ed

Fu
ll r

ep
lic

at
io

n

PE

Fig. 7 Comparative PE values for complex class fragmentation and primary fragmentation.

Solutions have been proposed to correct this

issue in [14]. On the other side, the Euclidian and
Manhattan measures do not have this kind of
degenerated behaviour.

Fig 7 presents the comparative study for both
methods of constructing vectors (M1 and M2) using
the hierarchical clustering algorithm. On the right
side of the figure there are also the results for the
primary only fragmentation, centralized version of
the database and the fully replicated architecture.
Also we compare the results of the hierarchical
clustering algorithm with the results obtained by
applying the fragmentation scheme developed in
[2](MinComplet_Ezeife). It can be seen that overall,
the centralized and fully replicated databases obtain
the worst results. This is due to low concurrency
factor in the centralized case and to the high cost of
managing fully replicated copies of all objects on all
nodes of the system (in the case of full replication). ,
As already said, primary only fragmentation is not
strongly influenced by the choice of the similarity
measure and always obtains weaker results than
complex class fragmentation. The best overall score
and the best individual score (fixed choice of
method + algorithm) show a promising
improvement over the average scored obtained by
the fragmentation method developed by Ezeife in
[2] (MinComplet_Ezeife). This algorithm uses a
technique adapted from relational database
fragmentation and applies it to object schemas.

Finally, it should be mentioned that the

hierarchical agglomerative clustering method is
characterized by the fact that once a step is done it
can never be undone. This could help increase the
gap between the results obtained by different
similarity measures, while a more behaved
clustering method that would allow correcting
misplaced objects in the next few iterations is more
likely to better reflect the real differences between
similarities.

6 Conclusions and Future Work
This paper presents a comparative study of the
influence of three similarity measures in the
fragmentation process of an Object Oriented
Database with complex class relationships, using a
hierarchical agglomerative clustering algorithm. We
show that the choice of different similarity measures
influences the resulting fragmentation in a real
database where the number of classes to fragment
and the number of inter-class dependencies is likely
to be important. Results on multiple database
schemas show that the Euclidian and Manhattan (in
some cases) similarity measure generally
outperforms the other similarity measures. Our
conclusions are based on initial suppositions that we
support and confirm with experimental results.
Given the empirical nature of proofs only by
experiments, we aim to find formal, mathematical
ways for proving the characteristics of different
similarity measures applied in the fragmentation

process using clustering techniques. This would
help improve the positive impression gained by
applying clustering methods in the horizontal
fragmentation process of distributed databases.

Last but not least, we show that using clustering
algorithms for horizontal object database
fragmentation proves to be a good choice when
compared to other existing fragmentation methods.
In this case all the similarity measures behave, when
using hierarchical clustering, at least as well as other
existing fragmentation algorithms. Generally the
obtained results are better than with other existing
algorithms. The choice for comparing with the
algorithm developed in [2] was made because
accurate fragmentation quality measurement was
easier in this case. There is work in progress to
assess the fragmentation quality for other
fragmentation algorithms and compare it with those
obtained by clustering.

As a final conclusion, it should be noted that the
choice of similarity measures when fragmenting
database schemas by clustering is important. The
fragmentation quality varies with the similarity
measure. There are, however similarities that behave
almost constantly on a wide range of input data. The
Euclidian and Manhattan fall in this category and
their results can be trusted as good in the majority of
cases.

References:
[1] Karlapalem, K., Navathe, S.B., Morsi, M.M.A. –
“Issues in distribution design of object-oriented
databases”. In M. Tamer Ozsu, U. Dayal, P.
Valduriez, editors, Distributed Object Management,
pp 148-164, Morgan Kaufmann Publishers, 1994.
[2] Ezeife, C.I., Barker, K. – “A Comprehensive
Approach to Horizontal Class Fragmentation in a
Distributed Object Based System”, International
Journal of Distributed and Parallel Databases, 3(3),
pp 247-272, 1995.
[3] Han, J., Kamber, M., Data Mining: Concepts
and Techniques, The Morgan Kaufmann Series in
Data Management Systems, 2000.
[4] Karlapalem, K., Li, Q. – “Partitioning Schemes
for Object-Oriented Databases”, In Proceedings of
the Fifth International Workshop on Research
Issues in Data Engineering-Distributed Object
Management, pp 42–49, Taiwan, 1995.
[5] Karlapalem, K., Li, Q., Vieweg, S. – “Method
Induced Partitioning Schemes in Object-Oriented
Databases”, In Proceedings of the 16th Int. Conf. on
Distributed Computing System (ICDCS’96), pp
377–384, Hong Kong, 1996.

[6] Ravat, S. – “La fragmentation d’un schema
conceptuel oriente objet”, In Ingenierie des systemes
d’information (ISI), 4(2), pp 161–193, 1996.
[7] Ezeife, C.I., Barker, K. – “Horizontal Class
Fragmentation for Advanced-Object Modes in a
Distributed Object-Based System”, In the
Proceedings of the 9th International Symposium on
Computer and Information Sciences, Antalya,
Turkey, pp 25-32, 1994.
[8] Bellatreche,L., Karlapalem, K., Simonet, A. –
“Horizontal Class Partitioning in Object-Oriented
Databases”, In Lecture Notes in Computer Science,
volume 1308, pp 58–67, Toulouse, France, 1997.
[9] Savonnet, M. et. al. – “Using Structural Schema
Information as Heuristics for Horizontal
Fragmentation of Object Classes in Distributed
OODB”, In Proc IX Int. Conf. on Parallel and
Distributed Computing Systems, France, pp 732-
737, 1996.
[10] Baiao, F., Mattoso, M. – “A Mixed
Fragmentation Algorithm for Distributed Object
Oriented Databases”, In Proc. Of the 9th Int. Conf.
on Computing Information, Canada, pp 141-148,
1998.
[11] Darabant, A.S., Campan, A.– “Hierarchical AI
Clustering for Horizontal Object Fragmentation”, In
Proc of Int. Conf. of Computers and
Communications, Oradea, pp 117-122, May, 2004 .
[12] Darabant, A.S, Campan, A. – “Optimal Class
Fragmentation Ordering in Object Oriented
Databases”, In Studia Universitatis Babes Bolyai
Informatica, pp. 45-54, Volume XLIX, Number 1
(2004), 2004.
[13] Darabant, A. S., Campan, A., Cret, O, –
“Hierarchical Clustering in Object Oriented Data
Models with Complex Class Relationships”, in
Proc. of the 8th IEEE International Conference on
Intelligent Engineering Systems INES2004, pag:
307-312, Cluj Napoca, 2004.
[14] Darabant, A. S., Campan, A., - “AI Clustering
Techniques: a New Approach to Object Oriented
Database Fragmentation”, in Proc. Of the 8th IEEE
International Conference on Intelligent Engineering
Systems, INES2004, pag: 73-78, Cluj Napoca, 2004.

* This work has been partially funded from the CNCSIS
research grant A_C No. 1/8 -2005, "Collaborative
Information Systems In The Global Economy"

http://www.cs.ubbcluj.ro/~studia-i/2004-1/index.php
http://www.cs.ubbcluj.ro/~studia-i/2004-1/index.php

