1 PLANNING

CLASSIC
PLANNIN

AL
G

In which we see how an agent can take advantage of the structure of a problem to
construct complex plans of action.

The task of coming up with a sequence of actions that will achieve a goal is called planning.
We have seen two examples of planning agents so far: the search-based problem-solving
agent of Chapter 3 and the logical planning agent of Chapter 10. This chapter is concerned
primarily with scaling up to complex planning problems that defeat the approaches we have
seen so far.

Section 11.1 develops an expressive yet carefully constrained language for representing
planning problems, including actions and states. The language is closely related to the propo-
sitional and first-order representations of actions in Chapters 7 and 10. Section 11.2 shows
how forward and backward search algorithms can take advantage of this representation, pri-
marily through accurate heuristics that can be derived automatically from the structure of the
representation. (This is analogous to the way in which effective heuristics were constructed
for constraint satisfaction problems in Chapter 5.) Sections 11.3 through 11.5 describe plan-
ning algorithms that go beyond forward and backward search, taking advantage of the rep-
resentation of the problem. In particular, we explore approaches that are not constrained to
consider only totally ordered sequences of actions.

For this chapter, we consider only environments that are fully observable, deterministic,
finite, static (change happens only when the agent acts), and discrete (in time, action, objects,
and effects). These are called classical planning environments. In contrast, nonclassical
planning is for partially observable or stochastic environments and involves a different set of
algorithms and agent designs, outlined in Chapters 12 and 17.

11.1 THE PLANNING PROBLEM

Let us consider what can happen when an ordinary problem-solving agent using standard
search algorithms—depth-first, A*, and so on—comes up against large, real-world problems.
That will help us design better planning agents.

375

376

Chapter 11. Planning

PROBLEM
DECOMPOSITION

NEARLY
DECOMPOSABLE

The most obvious difficulty is that the problem-solving agent can be overwhelmed by
irrelevant actions. Consider the task of buying a copy of Al: A Modern Approach from an
online bookseller. Suppose there is one buying action for each 10-digit ISBN number, for a
total of 10 billion actions. The search algorithm would have to examine the outcome states
of all 10 billion actions to find one that satisfies the goal, which is to own a copy of ISBN
0137903952. A sensible planning agent, on the other hand, should be able to work back
from an explicit goal description such as Have(ISBN0137903952) and generate the action
Buy(ISBN0137903952) directly. To do this, the agent simply needs the general knowledge
that Buy(x) results in Have(z). Given this knowledge and the goal, the planner can decide
in a single unification step that Buy(ISBN0137903952) is the right action.

The next difficulty is finding a good heuristic function. Suppose the agent’s goal is to
buy four different books online. Then there will be 104° plans of just four steps, so searching
without an accurate heuristic is out of the question. It is obvious to a human that a good
heuristic estimate for the cost of a state is the number of books that remain to be bought;
unfortunately, this insight is not obvious to a problem-solving agent, because it sees the goal
test only as a black box that returns true or false for each state. Therefore, the problem-
solving agent lacks autonomy; it requires a human to supply a heuristic function for each new
problem. On the other hand, if a planning agent has access to an explicit representation of the
goal as a conjunction of subgoals, then it can use a single domain-independent heuristic: the
number of unsatisfied conjuncts. For the book-buying problem, the goal would be Have(A) A
Have(B) N\ Have(C) A Have(D), and a state containing Have(A) A Have(C') would have
cost 2. Thus, the agent automatically gets the right heuristic for this problem, and for many
others. We shall see later in the chapter how to construct more sophisticated heuristics that
examine the available actions as well as the structure of the goal.

Finally, the problem solver might be inefficient because it cannot take advantage of
problem decomposition. Consider the problem of delivering a set of overnight packages to
their respective destinations, which are scattered across Australia. It makes sense to find out
the nearest airport for each destination and divide the overall problem into several subprob-
lems, one for each airport. Within the set of packages routed through a given airport, whether
further decomposition is possible depends on the destination city. We saw in Chapter 5 that
the ability to do this kind of decomposition contributes to the efficiency of constraint satisfac-
tion problem solvers. The same holds true for planners: in the worst case, it can take O(n!)
time to find the best plan to deliver n packages, but only O((n/k)! x k) time if the problem
can be decomposed into & equal parts.

As we noted in Chapter 5, perfectly decomposable problems are delicious but rare.*
The design of many planning systems—particularly the partial-order planners described in
Section 11.3—is based on the assumption that most real-world problems are nearly decom-
posable. That is, the planner can work on subgoals independently, but might need to do
some additional work to combine the resulting subplans. For some problems, this assump-

1 Notice that even the delivery of a package is not perfectly decomposable. There may be cases in which it
is better to assign packages to a more distant airport if that renders a flight to the nearest airport unnecessary.
Nevertheless, most delivery companies prefer the computational and organizational simplicity of sticking with
decomposed solutions.

Section 11.1.

The Planning Problem 377

GOAL SATISFACTION

ACTION SCHEMA

PRECONDITION

EFFECT

tion breaks down because working on one subgoal is likely to undo another subgoal. These
interactions among subgoals are what makes puzzles (like the 8-puzzle) puzzling.

The language of planning problems

The preceding discussion suggests that the representation of planning problems—states, ac-
tions, and goals—should make it possible for planning algorithms to take advantage of the
logical structure of the problem. The key is to find a language that is expressive enough to
describe a wide variety of problems, but restrictive enough to allow efficient algorithms to
operate over it. In this section, we first outline the basic representation language of classical
planners, known as the STRiIPs language.? Later, we point out some of the many possible
variations in STRIPS-like languages.

Representation of states. Planners decompose the world into logical conditions and
represent a state as a conjunction of positive literals. We will consider propositional literals;
for example, Poor A Unknown might represent the state of a hapless agent. We will also
use first-order literals; for example, At(Planey, Melbourne) A At(Planes, Sydney) might
represent a state in the package delivery problem. Literals in first-order state descriptions
must be ground and function-free. Literals such as A¢(z,y) or At(Father(Fred), Sydney)
are not allowed. The closed-world assumption is used, meaning that any conditions that are
not mentioned in a state are assumed false.

Representation of goals. A goal is a partially specified state, represented as a conjunc-
tion of positive ground literals, such as Rich A Famous or At(P,, Tahiti). A propositional
state s satisfies a goal ¢ if s contains all the atoms in g (and possibly others). For example,
the state Rich A Famous N\ Miserable satisfies the goal Rich A Famous.

Representation of actions. An action is specified in terms of the preconditions that
must hold before it can be executed and the effects that ensue when it is executed. For
example, an action for flying a plane from one location to another is:

Action(Fly(p, from, to),
PRECOND:At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFFECT:—At(p, from) A At(p, to))

This is more properly called an action schema, meaning that it represents a number of dif-
ferent actions that can be derived by instantiating the variables p, from, and to to different
constants. In general, an action schema consists of three parts:

e The action name and parameter list—for example, Fly(p, from, to)—serves to identify
the action.

e The precondition is a conjunction of function-free positive literals stating what must
be true in a state before the action can be executed. Any variables in the precondition
must also appear in the action’s parameter list.

e The effect is a conjunction of function-free literals describing how the state changes
when the action is executed. A positive literal P in the effect is asserted to be true in

2 STRIPS stands for STanford Research Institute Problem Solver.

378

Chapter 11. Planning

ADD LIST
DELETE LIST

APPLICABLE

RESULT

STRIPS ASSUMPTION

SOLUTION

the state resulting from the action, whereas a negative literal — P is asserted to be false.
Variables in the effect must also appear in the action’s parameter list.

To improve readability, some planning systems divide the effect into the add list for positive
literals and the delete list for negative literals.

Having defined the syntax for representations of planning problems, we can now define
the semantics. The most straightforward way to do this is to describe how actions affect
states. (An alternative method is to specify a direct translation into successor-state axioms,
whose semantics comes from first-order logic; see Exercise 11.3.) First, we say that an action
is applicable in any state that satisfies the precondition; otherwise, the action has no effect.
For a first-order action schema, establishing applicability will involve a substitution 8 for the
variables in the precondition. For example, suppose the current state is described by

At(Py, JFK) N\ At(Py, SFO) A Plane(Py) A Plane(Ps)
N Airport(JFK) A Airport(SFO) .

This state satisfies the precondition
At(p, from) A Plane(p) A Airport(from) A Airport(to)

with substitution {p/Pi, from/JFK, to/SFO} (among others—see Exercise 11.2). Thus,
the concrete action Fly(P,, JFK, SFO) is applicable.

Starting in state s, the result of executing an applicable action « is a state s’ that is the
same as s except that any positive literal P in the effect of a is added to s’ and any negative
literal =P is removed from s’. Thus, after Fly(P;, JFK, SFO), the current state becomes

At(Py, SFO) N\ At(Py, SFO) N\ Plane(Py) A Plane(Ps)
N Airport(JFK) A Airport(SFO) .

Note that if a positive effect is already in s it is not added twice, and if a negative effect is
not in s, then that part of the effect is ignored. This definition embodies the so-called STRIPS
assumption: that every literal not mentioned in the effect remains unchanged. In this way,
STRIPS avoids the representational frame problem described in Chapter 10.

Finally, we can define the solution for a planning problem. In its simplest form, this is
just an action sequence that, when executed in the initial state, results in a state that satisfies
the goal. Later in the chapter, we will allow solutions to be partially ordered sets of actions,
provided that every action sequence that respects the partial order is a solution.

Expressiveness and extensions

The various restrictions imposed by the STRIPS representation were chosen in the hope of
making planning algorithms simpler and more efficient, without making it too difficult to
describe real problems. One of the most important restrictions is that literals be function-
free. With this restriction, we can be sure that any action schema for a given problem can
be propositionalized—that is, turned into a finite collection of purely propositional action
representations with no variables. (See Chapter 9 for more on this topic.) For example, in
the air cargo domain for a problem with 10 planes and five airports, we could translate the
Fly(p, from, to) schema into 10 x 5 x 5 = 250 purely propositional actions. The planners

Section 11.1.

The Planning Problem 379

ADL

STRIPS Language ADL Language

Only positive literals in states: Positive and negative literals in states:
Poor A Unknown = Rich N = Famous

Closed World Assumption: Open World Assumption:
Unmentioned literals are false. Unmentioned literals are unknown.

Effect P A =) means add P and delete . | Effect P A =) means add P and —Q
and delete =P and Q).

Only ground literals in goals: Quantified variables in goals:

Rich A\ Famous dxAt(Pr, x) A At(Pa, x) is the goal of
having P; and P, in the same place.

Goals are conjunctions: Goals allow conjunction and disjunction:

Rich A\ Famous —Poor A (Famous V Smart)

Effects are conjunctions. Conditional effects allowed:

when P: E means E is an effect
only if P is satisfied.

No support for equality. Equality predicate (x = y) is built in.

No support for types. Variables can have types, as in (p : Plane).

Figure11.1 Comparison of STRIPS and ADL languages for representing planning prob-
lems. In both cases, goals behave as the preconditions of an action with no parameters.

in Sections 11.4 and 11.5 work directly with propositionalized descriptions. If we allow
function symbols, then infinitely many states and actions can be constructed.

In recent years, it has become clear that STRIPS is insufficiently expressive for some
real domains. As a result, many language variants have been developed. Figure 11.1 briefly
describes one important one, the Action Description Language or ADL, by comparing it with
the basic STRIPs language. In ADL, the Fly action could be written as

Action(Fly(p : Plane, from : Airport, to : Airport),
PRECOND: At(p, from) A (from # to)
EFFECT:—At(p, from) A At(p, to)) .

The notation p : Plane in the parameter list is an abbreviation for Plane(p) in the precondi-
tion; this adds no expressive power, but can be easier to read. (It also cuts down on the number
of possible propositional actions that can be constructed.) The precondition (from # to) ex-
presses the fact that a flight cannot be made from an airport to itself. This could not be
expressed succinctly in STRIPS.

The various planning formalisms used in Al have been systematized within a standard
syntax called the the Planning Domain Definition Language, or PDDL. This language allows
researchers to exchange becnchmark problems and compare results. PDDL includes sublan-
guages for STRIPS, ADL, and the hierarchical task networks we will see in Chapter 12.

380

Chapter 11. Planning

STATE CONSTRAINTS

Init(At(Cy, SFO) A At(Ca, JFK) A AL(Pi, SFO) A At(Py, JFK)
A Cargo(Cy) N Cargo(C2) A Plane(Py) A Plane(Ps)
A Airport(JFK) N Airport(SFO))
Goal(At(Cy, JFK) N At(Cq, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) A Plane(p) N Airport(a)
EFFECT: = At(c, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) N At(p, a) A Cargo(c) A Plane(p) N Airport(a)
EFFeCT: At(c, a) A — In(c, p))
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFFECT: = At(p, from) A At(p, to))

Figure11.2 A STRIPS problem involving transportation of air cargo between airports.

The STRIPsand ADL notations are adequate for many real domains. The subsections
that follow show some simple examples. There are still some significant restrictions, how-
ever. The most obvious is that they cannot represent in a natural way the ramifications of
actions. For example, if there are people, packages, or dust motes in the airplane, then they
too change location when the plane flies. We can represent these changes as the direct ef-
fects of flying, whereas it seems more natural to represent the location of the plane’s contents
as a logical consequence of the location of the plane. We will see more examples of such
state constraints in Section 11.5. Classical planning systems do not even attempt to address
the qualification problem: the problem of unrepresented circumstances that could cause an
action to fail. We will see how to address qualifications in Chapter 12.

Example: Air cargo transport

Figure 11.2 shows an air cargo transport problem involving loading and unloading cargo onto
and off of planes and flying it from place to place. The problem can be defined with three
actions: Load, Unload, and Fly. The actions affect two predicates: In(c, p) means that cargo
c is inside plane p, and At(x,a) means that object = (either plane or cargo) is at airport a.
Note that cargo is not At anywhere when it is In a plane, so At really means “available
for use at a given location.” It takes some experience with action definitions to handle such
details consistently. The following plan is a solution to the problem:

[Load(Ch, Py, SFO), Fly(Py, SFO, JFK),
Load(Cs, Py, JFK), Fly(Ps, JFK, SFO)] .

Our representation is pure STRIPS. In particular, it allows a plane to fly to and from the same
airport. Inequality literals in ADL could prevent this.

Section 11.1.

The Planning Problem 381

BLOCKS WORLD

Example: The sparetire problem

Consider the problem of changing a flat tire. More precisely, the goal is to have a good spare
tire properly mounted onto the car’s axle, where the initial state has a flat tire on the axle and
a good spare tire in the trunk. To keep it simple, our version of the problem is a very abstract
one, with no sticky lug nuts or other complications. There are just four actions: removing
the spare from the trunk, removing the flat tire from the axle, putting the spare on the axle,
and leaving the car unattended overnight. We assume that the car is in a particularly bad
neighborhood, so that the effect of leaving it overnight is that the tires disappear.

The ADL description of the problem is shown in Figure 11.3. Notice that it is purely
propositional. It goes beyond STRIPSin that it uses a negated precondition, = A¢(Flat, Axle),
for the PutOn(Spare, Azle) action. This could be avoided by using Clear(Axle) instead, as
we will see in the next example.

Init(At(Flat, Axle) N At(Spare, Trunk))
Goal(At(Spare, Azle))
Action(Remove(Spare, Trunk),

PRECOND: At(Spare, Trunk)

EFFECT: — At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Axle),

PRECOND: At(Flat, Axzle)

EFFECT: = At(Flat, Azle) N At(Flat, Ground))
Action(PutOn(Spare, Azle),

PRECOND: At(Spare, Ground) A — At(Flat, Azle)

EFFECT: — At(Spare, Ground) A At(Spare, Axle))
Action(LeaveOvernight,

PRECOND:

EFFeECT: = At(Spare, Ground) N — At(Spare, Azle) N — At(Spare, Trunk)

A = At(Flat, Ground) N — At(Flat, Axzle))

Figure11.3 The simple spare tire problem.

Example: Theblocksworld

One of the most famous planning domains is known as the blocks world. This domain
consists of a set of cube-shaped blocks sitting on a table.> The blocks can be stacked, but
only one block can fit directly on top of another. A robot arm can pick up a block and move
it to another position, either on the table or on top of another block. The arm can pick up
only one block at a time, so it cannot pick up a block that has another one on it. The goal will
always be to build one or more stacks of blocks, specified in terms of what blocks are on top
of what other blocks. For example, a goal might be to get block A on B and block C on D.

3 The blocks world used in planning research is much simpler than SHRDLU’s version, shown on page 20.

382

Chapter 11. Planning

We will use On (b, x) to indicate that block b is on x, where z is either another block or
the table. The action for moving block b from the top of x to the top of y will be Move(b, z,y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order
logic, this would be =32 On(x, b) or, alternatively, V= —=On(z, b). These could be stated as
preconditions in ADL. We can stay within the STRIPS language, however, by introducing a
new predicate, Clear(x), that is true when nothing is on .

The action Mowve moves a block b from z to y if both b and y are clear. After the move
is made, x is clear but y is not. A formal description of Move in STRIPS s

Action(Move(b, x,y),
PRECOND:On (b, z) A Clear(b) A Clear(y),
EFFECT:On(b,y) A Clear(z) A ~On(b,x) A = Clear(y)) .

Unfortunately, this action does not maintain Clear properly when z or y is the table. When
x = Table, this action has the effect Clear(Table), but the table should not become clear, and
when y = Table, it has the precondition Clear(Table), but the table does not have to be clear
to move a block onto it. To fix this, we do two things. First, we introduce another action to
move a block b from z to the table:
Action(MoveToTable(b,),

PRECOND:On(b, x) A Clear(b)),

EFFECT: On(b, Table) A Clear(z) A = On(b,x)) .
Second, we take the interpretation of Clear(b) to be “there is a clear space on b to hold a
block.” Under this interpretation, Clear(Table) will always be true. The only problem is that
nothing prevents the planner from using Move(b, z, Table) instead of MoveToTable(b,x).
We could live with this problem—it will lead to a larger-than-necessary search space, but will
not lead to incorrect answers—or we could introduce the predicate Block and add Block(b) A
Block(y) to the precondition of Move.

Finally, there is the problem of spurious actions such as Move(B, C, C'), which should
be a no-op, but which has contradictory effects. It is common to ignore such problems,
because they seldom cause incorrect plans to be produced. The correct approach is add in-
equality preconditions as shown in Figure 11.4.

11.2 PLANNING WITH STATE-SPACE SEARCH

PROGRESSION

Now we turn our attention to planning algorithms. The most straightforward approach is to
use state-space search. Because the descriptions of actions in a planning problem specify
both preconditions and effects, it is possible to search in either direction: either forward from
the initial state or backward from the goal, as shown in Figure 11.5. We can also use the
explicit action and goal representations to derive effective heuristics automatically.

Forward state-space search

Planning with forward state-space search is similar to the problem-solving approach of Chap-
ter 3. It is sometimes called progression planning, because it moves in the forward direction.

Section 11.2. Planning with State-Space Search 383

Init(On(A, Table) N On(B, Table) N On(C, Table)
A Block(A) A Block(B) N Block(C)
A Clear(A) A Clear(B) A Clear(C))
Goal(On(A,B) N On(B, C))
Action(Move(b, z, y),
PRECOND: On(b,z) A Clear(b) A Clear(y) N Block(b) A
(b#2) A(b#y) A ()
EFFECT: On(b,y) A Clear(z) A = On(b,x) A — Clear(y))
Action(MoveToTable(b, x),
PRECOND: On(b,x) A Clear(b) N Block(b) A (b # x),
EFFeCT: On(b, Table) A Clear(x) A = On(b,z))

Figure11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [Move(B, Table, C'), Move(A, Table, B)].

At(P4, B)
At(P,, A)

At(P4, A)

FA

@
At(P,, A)
AP, A
At(P,, B)
S~ ApP.A
At(P,, B) Fly(P1, A, B)
. P) I D AP B)
/—\ At(Pz, B)
~~ AP, B)
o AP, A)
N

Figure11l.5 Two approaches to searching for a plan. (a) Forward (progression) state-space
search, starting in the initial state and using the problem’s actions to search forward for the
goal state. (b) Backward (regression) state-space search: a belief-state search (see page 84)
starting at the goal state(s) and using the inverse of the actions to search backward for the
initial state.

We start in the problem’s initial state, considering sequences of actions until we find a se-
quence that reaches a goal state. The formulation of planning problems as state-space search
problems is as follows:

e The initial state of the search is the initial state from the planning problem. In general,
each state will be a set of positive ground literals; literals not appearing are false.

384

Chapter 11. Planning

RELEVANCE

e The actions that are applicable to a state are all those whose preconditions are satisfied.
The successor state resulting from an action is generated by adding the positive effect
literals and deleting the negative effect literals. (In the first-order case, we must apply
the unifier from the preconditions to the effect literals.) Note that a single successor
function works for all planning problems—a consequence of using an explicit action
representation.

e The goal test checks whether the state satisfies the goal of the planning problem.

e The step cost of each action is typically 1. Although it would be easy to allow different
costs for different actions, this is seldom done by STRiIPS planners.

Recall that, in the absence of function symbols, the state space of a planning problem is finite.
Therefore, any graph search algorithm that is complete—for example, A*—uwiill be a complete
planning algorithm.

From the earliest days of planning research (around 1961) until recently (around 1998)
it was assumed that forward state-space search was too inefficient to be practical. It is not
hard to come up with reasons why—ijust refer back to the start of Section 11.1. First, forward
search does not address the irrelevant action problem—all applicable actions are considered
from each state. Second, the approach quickly bogs down without a good heuristic. Consider
an air cargo problem with 10 airports, where each airport has 5 planes and 20 pieces of cargo.
The goal is to move all the cargo at airport A to airport B. There is a simple solution to the
problem: load the 20 pieces of cargo into one of the planes at A, fly the plane to B, and unload
the cargo. But finding the solution can be difficult because the average branching factor is
huge: each of the 50 planes can fly to 9 other airports, and each of the 200 packages can be
either unloaded (if it is loaded), or loaded into any plane at its airport (if it is unloaded). On
average, let’s say there are about 1000 possible actions, so the search tree up to the depth of
the obvious solution has about 1000*! nodes. It is clear that a very accurate heuristic will be
needed to make this kind of search efficient. We will discuss some possible heuristics after
looking at backward search.

Backward state-space search

Backward state-space search was described briefly as part of bidirectional search in Chapter 3.
We noted there that backward search can be difficult to implement when the goal states are
described by a set of constraints rather than being listed explicitly. In particular, it is not
always obvious how to generate a description of the possible predecessors of the set of goal
states. We will see that the STRIPS representation makes this quite easy because sets of states
can be described by the literals that must be true in those states.

The main advantage of backward search is that it allows us to consider only relevant
actions. An action is relevant to a conjunctive goal if it achieves one of the conjuncts of the
goal. For example, the goal in our 10-airport air cargo problem is to have 20 pieces of cargo
at airport B, or more precisely,

At(C1, B) N At(Ca, B) A ... AN At(Cy, B) .

Now consider the conjunct At(C1, B). Working backwards, we can seek actions that have
this as an effect. There is only one: Unload(C1, p, B), where plane p is unspecified.

Section 11.2.

Planning with State-Space Search 385

REGRESSION

CONSISTENCY

Notice that there are many irrelevant actions that can also lead to a goal state. For
example, we can fly an empty plane from JFK to SFO; this action reaches a goal state from
a predecessor state in which the plane is at JF'K and all the goal conjuncts are satisfied. A
backward search that allows irrelevant actions will still be complete, but it will be much less
efficient. If a solution exists, it will be found by a backward search that allows only relevant
actions. The restriction to relevant actions means that backward search often has a much
lower branching factor than forward search. For example, our air cargo problem has about
1000 actions leading forward from the initial state, but only 20 actions working backward
from the goal.

Searching backwards is sometimes called regression planning. The principal question
in regression planning is this: what are the states from which applying a given action leads to
the goal? Computing the description of these states is called regressing the goal through the
action. To see how to do it, consider the air cargo example. We have the goal

At(Cl, B) A At(CQ, B) A ...\ At(Cyy, B)

and the relevant action Unload(C4, p, B), which achieves the first conjunct. The action will
work only if its preconditions are satisfied. Therefore, any predecessor state must include
these preconditions: I'n(C1,p) A At(p, B). Moreover, the subgoal A¢(C4, B) should not be
true in the predecessor state.* Thus, the predecessor description is

In(Cl,p) A At(p, B) A At(CQ, B) VAN At(CQQ, B) .

In addition to insisting that actions achieve some desired literal, we must insist that the actions
not undo any desired literals. An action that satisfies this restriction is called consistent. For
example, the action Load(C4,p) would not be consistent with the current goal, because it
would negate the literal A¢(Cs, B).

Given definitions of relevance and consistency, we can describe the general process of
constructing predecessors for backward search. Given a goal description GG, let A be an action
that is relevant and consistent. The corresponding predecessor is as follows:

e Any positive effects of A that appear in G are deleted.

e Each precondition literal of A is added, unless it already appears.
Any of the standard search algorithms can be used to carry out the search. Termination occurs
when a predecessor description is generated that is satisfied by the initial state of the planning
problem. In the first-order case, satisfaction might require a substitution for variables in the

predecessor description. For example, the predecessor description in the preceding paragraph
is satisfied by the initial state

In(Cl, P12) VAN At(Plg, B) A At(CQ, B) VANRAN At(CQO, B)

with substitution {p/Pi2}. The substitution must be applied to the actions leading from the
state to the goal, producing the solution [Unload(C1, P12, B)].

4 If the subgoal were true in the predecessor state, the action would still lead to a goal state. On the other hand,
such actions are irrelevant because they do not make the goal true.

386

Chapter 11. Planning

SUBGOAL
INDEPENDENCE

Heuristicsfor state-space search

It turns out that neither forward nor backward search is efficient without a good heuristic
function. Recall from Chapter 4 that a heuristic function estimates the distance from a state
to the goal; in STRIPS planning, the cost of each action is 1, so the distance is the number of
actions. The basic idea is to look at the effects of the actions and at the goals that must be
achieved and to guess how many actions are needed to achieve all the goals. Finding the exact
number is NP hard, but it is possible to find reasonable estimates most of the time without too
much computation. We might also be able to derive an admissible heuristic—one that does
not overestimate. This could be used with A* search to find optimal solutions.

There are two approaches that can be tried. The first is to derive a relaxed problem
from the given problem specification, as described in Chapter 4. The optimal solution cost
for the relaxed problem—which we hope is very easy to solve—gives an admissible heuristic
for the original problem. The second approach is to pretend that a pure divide-and-conquer
algorithm will work. This is called the subgoal independence assumption: the cost of solving
a conjunction of subgoals is approximated by the sum of the costs of solving each subgoal
independently. The subgoal independence assumption can be optimistic or pessimistic. It
is optimistic when there are negative interactions between the subplans for each subgoal—
for example, when an action in one subplan deletes a goal achieved by another subplan.
It is pessimistic, and therefore inadmissible, when subplans contain redundant actions—for
instance, two actions that could be replaced by a single action in the merged plan.

Let us consider how to derive relaxed planning problems. Since explicit representations
of preconditions and effects are available, the process will work by modifying those repre-
sentations. (Compare this approach with search problems, where the successor function is
a black box.) The simplest idea is to relax the problem by removing all preconditions from
the actions. Then every action will always be applicable, and any literal can be achieved in
one step (if there is an applicable action—if not, the goal is impossible). This almost implies
that the number of steps required to solve a conjunction of goals is the number of unsatisfied
goals—almost but not quite, because (1) there may be two actions, each of which deletes
the goal literal achieved by the other, and (2) some action may achieve multiple goals. If we
combine our relaxed problem with the subgoal independence assumption, both of these issues
are assumed away and the resulting heuristic is exactly the number of unsatisfied goals.

In many cases, a more accurate heuristic is obtained by considering at least the positive
interactions arising from actions that achieve multiple goals. First, we relax the problem fur-
ther by removing negative effects (see Exercise 11.6). Then, we count the minimum number
of actions required such that the union of those actions’ positive effects satisfies the goal. For
example, consider

Goal(ANBAC)

Action(X, EFFECT:A A P)
Action(Y,EFFECT:B A C A Q)
Action(Z,EFFECT:BAP A Q) .

The minimal set cover of the goal { A, B, C'} is given by the actions { X, Y'}, so the set cover
heuristic returns a cost of 2. This improves on the subgoal independence assumption, which

Section 11.3.

Partial-Order Planning 387

EMPTY-DELETE-LIST

gives a heuristic value of 3. There is one minor irritation: the set cover problem is NP-
hard. A simple greedy set-covering algorithm is guaranteed to return a value that is within a
factor of log n of the true minimum value, where n is the number of literals in the goal, and
usually works much better than this in practice. Unfortunately, the greedy algorithm loses the
guarantee of admissibility for the heuristic.

It is also possible to generate relaxed problems by removing negative effects without
removing preconditions. That is, if an action has the effect A A =B in the original problem,
it will have the effect A in the relaxed problem. This means that we need not worry about
negative interactions between subplans, because no action can delete the literals achieved
by another action. The solution cost of the resulting relaxed problem gives what is called the
empty-delete-list heuristic. The heuristic is quite accurate, but computing it involves actually
running a (simple) planning algorithm. In practice, the search in the relaxed problem is often
fast enough that the cost is worthwhile.

The heuristics described here can be used in either the progression or the regression
direction. At the time of writing, progression planners using the empty-delete-list heuristic
hold the lead. That is likely to change as new heuristics and new search techniques are ex-
plored. Since planning is exponentially hard,® no algorithm will be efficient for all problems,
but many practical problems can be solved with the heuristic methods in this chapter—far
more than could be solved just a few years ago.

11.3 PARTIAL-ORDER PLANNING

LEAST COMMITMENT

Forward and backward state-space search are particular forms of totally ordered plan search.
They explore only strictly linear sequences of actions directly connected to the start or goal.
This means that they cannot take advantage of problem decomposition. Rather than work on
each subproblem separately, they must always make decisions about how to sequence actions
from all the subproblems. We would prefer an approach that works on several subgoals
independently, solves them with several subplans, and then combines the subplans.

Such an approach also has the advantage of flexibility in the order in which it constructs
the plan. That is, the planner can work on “obvious” or “important” decisions first, rather than
being forced to work on steps in chronological order. For example, a planning agent that is in
Berkeley and wishes to be in Monte Carlo might first try to find a flight from San Francisco
to Paris; given information about the departure and arrival times, it can then work on ways to
get to and from the airports.

The general strategy of delaying a choice during search is called a least commitment
strategy. There is no formal definition of least commitment, and clearly some degree of
commitment is necessary, lest the search would make no progress. Despite the informality,
least commitment is a useful concept for analyzing when decisions should be made in any
search problem.

5 Technically, STRIPS-style planning is PSPACE-complete unless actions have only positive preconditions and
only one effect literal (Bylander, 1994).

388

Chapter 11. Planning

PARTIAL-ORDER
PLANNER

LINEARIZATION

Our first concrete example will be much simpler than planning a vacation. Consider
the simple problem of putting on a pair of shoes. We can describe this as a formal planning
problem as follows:

Goal(RightShoeOn N LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Action(RightSock, EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Action(LeftSock, EFFECT: LeftSockOn) .

A planner should be able to come up with the two-action sequence RightSock followed by
RightShoe to achieve the first conjunct of the goal and the sequence LeftSock followed by
LeftShoe for the second conjunct. Then the two sequences can be combined to yield the final
plan. In doing this, the planner will be manipulating the two subsequences independently,
without committing to whether an action in one sequence is before or after an action in the
other. Any planning algorithm that can place two actions into a plan without specifying which
comes first is called a partial-order planner. Figure 11.6 shows the partial-order plan that is
the solution to the shoes and socks problem. Note that the solution is represented as a graph
of actions, not a sequence. Note also the “dummy” actions called Start and Finish, which
mark the beginning and end of the plan. Calling them actions symplifies things, because
now every step of a plan is an action. The partial-order solution corresponds to six possible
total-order plans; each of these is called a linearization of the partial-order plan.

Partial-order planning can be implemented as a search in the space of partial-order
plans. (From now on, we will just call them “plans.”) That is, we start with an empty plan.
Then we consider ways of refining the plan until we come up with a complete plan that
solves the problem. The actions in this search are not actions in the world, but actions on
plans: adding a step to the plan, imposing an ordering that puts one action before another,
and so on.

We will define the POP algorithm for partial-order planning. It is traditional to write
out the POP algorithm as a stand-alone program, but we will instead formulate partial-order
planning as an instance of a search problem. This allows us to focus on the plan refinement
steps that can be applied, rather than worrying about how the algorithm explores the space. In
fact, a wide variety of uninformed or heuristic search methods can be applied once the search
problem is formulated.

Remember that the states of our search problem will be (mostly unfinished) plans. To
avoid confusion with the states of the world, we will talk about plans rather than states. Each
plan has the following four components, where the first two define the steps of the plan and
the last two serve a bookkeeping function to determine how plans can be extended:

e A set of actions that make up the steps of the plan. These are taken from the set of
actions in the planning problem. The “empty” plan contains just the Start and Finish
actions. Start has no preconditions and has as its effect all the literals in the initial state
of the planning problem. Finish has no effects and has as its preconditions the goal
literals of the planning problem.

Section 11.3.

Partial-Order Planning 389

ORDERING
CONSTRAINTS

CAUSAL LINKS
ACHIEVES

CONFLICTS

OPEN
PRECONDITIONS

Partial-Order Plan: Total-Order Plans:

Start Start Start Start Start Start Start

N I S TN TN NN
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock

Sock Sotk f ! ! ! ! '

LeftSockOn RightSockOn + + + + + +

Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe

Left Right
Shoe Shoe

Right Left Right Left Left Right
Shoe Shoe Shoe Shoe Sock Sock

LeftShoeOn, RightShoeOn + + + + + +

\ / ' ! 1 1 ' '
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe

Finish Finish Finish Finish Finish Finish Finish

Figure11.6 A partial-order plan for putting on shoes and socks, and the six corresponding
linearizations into total-order plans.

o A set of ordering constraints. Each ordering constraint is of the form A < B, which is

read as “A before B” and means that action A must be executed sometime before ac-
tion B, but not necessarily immediately before. The ordering constraints must describe
a proper partial order. Any cycle—such as A < B and B < A—represents a contradic-
tion, so an ordering constraint cannot be added to the plan if it creates a cycle.

A set of causal links. A causal link between two actions A and B in the plan is written
as A _P, Bandisread as “A achieves p for B.” For example, the causal link

RightSock Ti9M5°¢ckOn piontShoe

asserts that RightSockOn is an effect of the RightSock action and a precondition of
RightShoe. It also asserts that RightSockOn must remain true from the time of ac-
tion RightSock to the time of action RightShoe. In other words, the plan may not be
extended by adding a new action C' that conflicts with the causal link. An action C
conflicts with A _2, B if C has the effect —p and if C' could (according to the ordering
constraints) come after A and before B. Some authors call causal links protection in-
tervals, because the link A _2_, B protects p from being negated over the interval from
Ato B.

A set of open preconditions. A precondition is open if it is not achieved by some action
in the plan. Planners will work to reduce the set of open preconditions to the empty set,
without introducing a contradiction.

390

Chapter 11. Planning

CONSISTENT PLAN

s

For example, the final plan in Figure 11.6 has the following components (not shown are the
ordering constraints that put every other action after Start and before Finish):

Actions:{ RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}

Orderings:{ RightSock < RightShoe, LeftSock < LeftShoe}

Links:{ RightSock RightSockOn: piantShoe, LeftSock et5°k0m LeftShoe,
RightShoe RightShoeOn Finish, LeftShoe LeftShoeOn Finish}

Open Preconditions:{ } .

We define a consistent plan as a plan in which there are no cycles in the ordering con-
straints and no conflicts with the causal links. A consistent plan with no open preconditions
is a solution. A moment’s thought should convince the reader of the following fact: every
linearization of a partial-order solution is a total-order solution whose execution from the
initial state will reach a goal state. This means that we can extend the notion of “executing
a plan” from total-order to partial-order plans. A partial-order plan is executed by repeatedly
choosing any of the possible next actions. We will see in Chapter 12 that the flexibility avail-
able to the agent as it executes the plan can be very useful when the world fails to cooperate.
The flexible ordering also makes it easier to combine smaller plans into larger ones, because
each of the small plans can reorder its actions to avoid conflict with the other plans.

Now we are ready to formulate the search problem that POP solves. We will begin with
a formulation suitable for propositional planning problems, leaving the first-order complica-
tions for later. As usual, the definition includes the initial state, actions, and goal test.

e The initial plan contains Start and Finish, the ordering constraint Start < Finish, and
no causal links and has all the preconditions in Finish as open preconditions.

e The successor function arbitrarily picks one open precondition p on an action B and
generates a successor plan for every possible consistent way of choosing an action A
that achieves p. Consistency is enforced as follows:

1. The causal link A _?_, B and the ordering constraint A < B are added to the plan.
Action A may be an existing action in the plan or a new one. If it is new, add it to
the plan and also add Start < A and A < Finish.

2. We resolve conflicts between the new causal link and all existing actions and be-
tween the action A (if it is new) and all existing causal links. A conflict between
A 2, Band C isresolved by making C occur at some time outside the protection
interval, either by adding B < C or C' < A. We add successor states for either or
both if they result in consistent plans.

e The goal test checks whether a plan is a solution to the original planning problem.
Because only consistent plans are generated, the goal test just needs to check that there
are no open preconditions.

Remember that the actions considered by the search algorithms under this formulation are
plan refinement steps rather than the real actions from the domain itself. The path cost is
therefore irrelevant, strictly speaking, because the only thing that matters is the total cost of
the real actions in the plan to which the path leads. Nonetheless, it is possible to specify a
path cost function that reflects the real plan costs: we charge 1 for each real action added to

Section 11.3.

Partial-Order Planning 391

the plan and 0 for all other refinement steps. In this way, g(n), where n is a plan, will be
equal to the number of real actions in the plan. A heuristic estimate h(n) can also be used.

At first glance, one might think that the successor function should include successors
for every open p, not just for one of them. This would be redundant and inefficient, however,
for the same reason that constraint satisfaction algorithms don’t include successors for every
possible variable: the order in which we consider open preconditions (like the order in which
we consider CSP variables) is commutative. (See page 141.) Thus, we can choose an arbitrary
ordering and still have a complete algorithm. Choosing the right ordering can lead to a faster
search, but all orderings end up with the same set of candidate solutions.

A partial-order planning example

Now let’s look at how POP solves the spare tire problem from Section 11.1. The problem
description is repeated in Figure 11.7.

Init(At(Flat, Axle) N At(Spare, Trunk))
Goal(At(Spare, Azle))
Action(Remove(Spare, Trunk),

PRECOND: At(Spare, Trunk)

EFFECT: = At(Spare, Trunk) N At(Spare, Ground))
Action(Remove(Flat, Axle),

PRECOND: At(Flat, Axzle)

EFFECT: — At(Flat, Azle) N At(Flat, Ground))
Action(PutOn(Spare, Azle),

PRECOND: At(Spare, Ground) A — At(Flat, Azle)

EFFECT: — At(Spare, Ground) A At(Spare, Axle))
Action(LeaveOvernight,

PRECOND:

EFFeECT: = At(Spare, Ground) N — At(Spare, Azle) N — At(Spare, Trunk)

A = At(Flat, Ground) N — At(Flat, Axle))

Figure11.7 The simple flat tire problem description.

The search for a solution begins with the initial plan, containing a Start action with the
effect At(Spare, Trunk) N At(Flat, Azle) and a Finish action with the sole precondition
At(Spare, Azle). Then we generate successors by picking an open precondition to work
on (irrevocably) and choosing among the possible actions to achieve it. For now, we will
not worry about a heuristic function to help with these decisions; we will make seemingly
arbitrary choices. The sequence of events is as follows:

1. Pick the only open precondition, At(Spare, Azle) of Finish. Choose the only applica-
ble action, PutOn(Spare, Azle).

2. Pick the At(Spare, Ground) precondition of PutOn(Spare, Azle). Choose the only
applicable action, Remove(Spare, Trunk) to achieve it. The resulting plan is shown in
Figure 11.8.

392

Chapter 11. Planning

At(Spare,Trunk)| Remove(Spare, Trunk) \

At(Spare, Trunk) At(Spare,Ground) .
(Sp 1| PutOn(Spare,Axle) I_»At(Spare,AXle)

At(Flat,Axle) =1 At(Flat,Axle)

Figure11.8 The incomplete partial-order plan for the tire problem, after choosing actions
for the first two open preconditions. Boxes represent actions, with preconditions on the left
and effects on the right. (Effects are omitted, except for that of the Start action.) Dark arrows
represent causal links protecting the proposition at the head of the arrow.

3. Pick the = At(Flat, Azle) precondition of PutOn(Spare, Azle). Just to be contrary,
choose the LeaveOvernight action rather than the Remove(Flat, Axle) action. Notice
that Leave Overnight also has the effect = At(Spare, Ground), which means it conflicts
with the causal link

Remove(Spare, Trunk) At(Spare, Ground) PutOn(Spare, Azle) .

To resolve the conflict we add an ordering constraint putting Leave Overnight before
Remove(Spare, Trunk). The resulting plan is shown in Figure 11.9. (Why does this
resolve the conflict, and why is there no other way to resolve it?)

At(Spare,Trunk)| Remove(Spare, Trunk)

/

At(Spare,Trunk) / At(Spare,Ground)
Start / PutOn(Spare,Axle |->Ats AxI m
At(Flat,Axle) ! -1 At(Flat,Axle) | Sp) (Spare Xe)

/ -1 At(Flat,Axle)
- 1 At(Flat,Ground)
LeaveOvernight |7 At(Spare,Axle)
1 At(Spare,Ground)

—1 At(Spare,Trunk)

Figure 11.9 The plan after choosing LeaveOuvernight as the action for achieving
—At(Flat, Azle). To avoid a conflict with the causal link from Remove(Spare, Trunk)
that protects At(Spare, Ground), LeaveOvernight is constrained to occur before
Remove(Spare, Trunk), as shown by the dashed arrow.

4. The only remaining open precondition at this point is the At(Spare, Trunk) precondi-
tion of the action Remove(Spare, Trunk). The only action that can achieve it is the ex-
isting Start action, but the causal link from Start to Remove(Spare, Trunk) is in con-
flict with the = At(Spare, Trunk) effect of Leave Overnight. This time there is no way
to resolve the conflict with Leave Overnight: we cannot order it before Start (because
nothing can come before Start), and we cannot order it after Remove(Spare, Trunk)
(because there is already a constraint ordering it before Remove(Spare, Trunk)). So
we are forced to back up, remove the Remove(Spare, Trunk) action and the last two
causal links, and return to the state in Figure 11.8. In essence, the planner has proved
that LeaveOvernight doesn’t work as a way to change a tire.

Section 11.3. Partial-Order Planning 393

5. Consider again the —At(Flat, Azle) precondition of PutOn(Spare, Azle). This time,
we choose Remove(Flat, Azle).

6. Once again, pick the At(Spare, Tire) precondition of Remove(Spare, Trunk) and
choose Start to achieve it. This time there are no conflicts.

7. Pick the At(Flat, Azle) precondition of Remove(Flat, Azle), and choose Start to
achieve it. This gives us a complete, consistent plan—in other words a solution—as
shown in Figure 11.10.

At(Spare,Trunk)| Remove(Spare, Trunk) \

At(Spare, Trunk) At(Spare,Ground) -
Start PutOn(Spare,Axle At(Spare,Axle)| Finish
Aot Ade) [Puton(sp) - | Finish |

T1At(Flat,Axle)

At(Flat,Axle) | Remove(Flat,Axle)

Figure 11.10 The final solution to the tire problem. Note that Remove(Spare, Trunk)
and Remove(Flat, Axle) can be done in either order, as long as they are completed before
the PutOn(Spare, Axle) action.

Although this example is very simple, it illustrates some of the strengths of partial-order
planning. First, the causal links lead to early pruning of portions of the search space that,
because of irresolvable conflicts, contain no solutions. Second, the solution in Figure 11.10
is a partial-order plan. In this case the advantage is small, because there are only two possible
linearizations; nonetheless, an agent might welcome the flexibility—for example, if the tire
has to be changed in the middle of heavy traffic.

The example also points to some possible improvements that could be made. For exam-
ple, there is duplication of effort: Start is linked to Remove(Spare, Trunk) before the con-
flict causes a backtrack and is then unlinked by backtracking even though it is not involved
in the conflict. It is then relinked as the search continues. This is typical of chronological
backtracking and might be mitigated by dependency-directed backtracking.

Partial-order planning with unbound variables

In this section, we consider the complications that can arise when POP is used with first-
order action representations that include variables. Suppose we have a blocks world problem
(Figure 11.4) with the open precondition On(A, B) and the action

Action(Move(b, x,y),
PRECOND:On (b, x) A Clear(b) A Clear(y),
EFFECT:On(b,y) A Clear(x) A =On(b,z) A = Clear(y)) .

394

Chapter 11. Planning

INEQUALITY
CONSTRAINTS

This action achieves On (A, B) because the effect On(b, y) unifies with On(A, B) with the
substitution {b/A, y/B}. We then apply this substitution to the action, yielding

Action(Move(A, z, B),
PRECOND:On(A, x) A Clear(A) A Clear(B),
EFFECT:On(A, B) A Clear(z) A ~On(A, z) A = Clear(B)) .

This leaves the variable = unbound. That is, the action says to move block A from somewhere,
without yet saying whence. This is another example of the least commitment principle: we
can delay making the choice until some other step in the plan makes it for us. For example,
suppose we have On (A, D) in the initial state. Then the Start action can be used to achieve
On(A,), binding x to D. This strategy of waiting for more information before choosing x
is often more efficient than trying every possible value of x and backtracking for each one
that fails.

The presence of variables in preconditions and actions complicates the process of de-
tecting and resolving conflicts. For example, when Move(A, x, B) is added to the plan, we
will need a causal link

Move(A, x, B) OAB) pinish .

If there is another action M, with effect ~On(A, z), then M5 conflicts only if z is B. To ac-
commodate this possibility, we extend the representation of plans to include a set of inequal-
ity constraints of the form z £ X where z is a variable and X is either another variable or a
constant symbol. In this case, we would resolve the conflict by adding = # B, which means
that future extensions to the plan can instantiate z to any value except B. Anytime we apply
a substitution to a plan, we must check that the inequalities do not contradict the substitution.
For example, a substitution that includes z/y conflicts with the inequality constraint # y.
Such conflicts cannot be resolved, so the planner must backtrack.

A more extensive example of POP planning with variables in the blocks world is given
in Section 12.6.

Heuristicsfor partial-order planning

Compared with total-order planning, partial-order planning has a clear advantage in being
able to decompose problems into subproblems. It also has a disadvantage in that it does
not represent states directly, so it is harder to estimate how far a partial-order plan is from
achieving a goal. At present, there is less understanding of how to compute accurate heuristics
for partial-order planning than for total-order planning.

The most obvious heuristic is to count the number of distinct open preconditions. This
can be improved by subtracting the number of open preconditions that match literals in the
Start state. As in the total-order case, this overestimates the cost when there are actions
that achieve multiple goals and underestimates the cost when there are negative interactions
between plan steps. The next section presents an approach that allows us to get much more
accurate heuristics from a relaxed problem.

The heuristic function is used to choose which plan to refine. Given this choice, the
algorithm generates successors based on the selection of a single open precondition to work

Section 11.4.

Planning Graphs 395

on. As in the case of variable selection on constraint satisfaction algorithms, this selection
has a large impact on efficiency. The most-constrained-variable heuristic from CSPs can
be adapted for planning algorithms and seems to work well. The idea is to select the open
condition that can be satisfied in the fewest number of ways. There are two special cases
of this heuristic. First, if an open condition cannot be achieved by any action, the heuristic
will select it; this is a good idea because early detection of impossibility can save a great
deal of work. Second, if an open condition can be achieved in only one way, then it should
be selected because the decision is unavoidable and could provide additional constraints on
other choices still to be made. Although full computation of the number of ways to satisfy
each open condition is expensive and not always worthwhile, experiments show that handling
the two special cases provides very substantial speedups.

11.4 PLANNING GRAPHS

PLANNING GRAPH

LEVELS

All of the heuristics we have suggested for total-order and partial-order planning can suffer
from inaccuracies. This section shows how a special data structure called a planning graph
can be used to give better heuristic estimates. These heuristics can be applied to any of the
search techniques we have seen so far. Alternatively, we can extract a solution directly from
the planning graph, using a specialized algorithm such as the one called GRAPHPLAN.

A planning graph consists of a sequence of levels that correspond to time steps in the
plan, where level 0 is the initial state. Each level contains a set of literals and a set of actions.
Roughly speaking, the literals are all those that could be true at that time step, depending on
the actions executed at preceding time steps. Also roughly speaking, the actions are all those
actions that could have their preconditions satisfied at that time step, depending on which of
the literals actually hold. We say “roughly speaking” because the planning graph records only
a restricted subset of the possible negative interactions among actions; therefore, it might be
optimistic about the minimum number of time steps required for a literal to become true.
Nonetheless, this number of steps in the planning graph provides a good estimate of how
difficult it is to achieve a given literal from the initial state. More importantly, the planning
graph is defined in such a way that it can be constructed very efficiently.

Planning graphs work only for propositional planning problems—ones with no vari-
ables. As we mentioned in Section 11.1, both STRIPS and ADL representations can be
propositionalized. For problems with large numbers of objects, this could result in a very
substantial blowup in the number of action schemata. Despite this, planning graphs have
proved to be effective tools for solving hard planning problems.

We will illustrate planning graphs with a simple example. (More complex examples
lead to graphs that won’t fit on the page.) Figure 11.11 shows a problem, and Figure 11.12
shows its planning graph. We start with state level Sy, which represents the problem’s initial
state. We follow that with action level Ay, in which we place all the actions whose precon-
ditions are satisfied in the previous level. Each action is connected to its preconditions in Sy
and its effects in S1, in this case introducing new literals into .S; that were not in Sj.

396

Chapter 11. Planning

PERSISTENCE
ACTIONS

MUTUAL EXCLUSION
MUTEX

Init(Have(Cake))
Goal(Have(Cake) N Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)

EFFECT: = Have(Cake) A FEaten(Cake))
Action(Bake(Cake)

PRECOND: = Have(Cake)

EFFECT: Have(Cake)

Figure11.11 The “have cake and eat cake too” problem.

So Ao Sy A Sz
Have(Cake) T Have(Cake) T Have(Cake)
- Have(Cake) T - Have(Cake)
Eaten(Cake) T Eaten(Cake)
— Eaten(Cake) . 7 Eaten(Cake) T - Eaten(Cake)

Figure11.12 The planning graph for the “have cake and eat cake too” problem up to level
So. Rectangles indicate actions (small squares indicate persistence actions) and straight lines
indicate preconditions and effects. Mutex links are shown as curved gray lines.

The planning graph needs a way to represent inaction as well as action. That is, it needs
the equivalent of the frame axioms in situation calculus that allow a literal to remain true
from one situation to the next if no action alters it. In a planning graph this is done with a
set of persistence actions. For every positive and negative literal C', we add to the problem
a persistence action with precondition C' and effect C. Figure 11.12 shows one “real” action,
Eat(Cake) in Ap, along with two persistence actions drawn as small square boxes.

Level A contains all the actions that could occur in state .Sy, but just as importantly it
records conflicts between actions that would prevent them from occurring together. The gray
lines in Figure 11.12 indicate mutual exclusion (or mutex) links. For example, Eat(Cake)
is mutually exclusive with the persistence of either Have(Cake) or —FEaten(Cake). We shall
see shortly how mutex links are computed.

Level S; contains all the literals that could result from picking any subset of the ac-
tions in Ag. It also contains mutex links (gray lines) indicating literals that could not appear
together, regardless of the choice of actions. For example, Have(Cake) and Eaten(Cake)
are mutex: depending on the choice of actions in Ag, one or the other, but not both, could be
the result. In other words, S; represents multiple states, just as regression state-space search
does, and the mutex links are constraints that define the set of possible states.

We continue in this way, alternating between state level S; and action level A; until we
reach a level where two consecutive levels are identical. At this point, we say that the graph

Section 11.4.

Planning Graphs 397

LEVELED OFF

15

LEVEL COST

SERIAL PLANNING
GRAPH

has leveled off. Every subsequent level will be identical, so further expansion is unnecessary.

What we end up with is a structure where every A; level contains all the actions that are
applicable in S;, along with constraints saying which pairs of actions cannot both be executed.
Every S; level contains all the literals that could result from any possible choice of actions
in A;_1, along with constraints saying which pairs of literals are not possible. It is important
to note that the process of constructing the planning graph does not require choosing among
actions, which would entail combinatorial search. Instead, it just records the impossibility
of certain choices using mutex links. The complexity of constructing the planning graph
is a low-order polynomial in the number of actions and literals, whereas the state space is
exponential in the number of literals.

We now define mutex links for both actions and literals. A mutex relation holds between
two actions at a given level if any of the following three conditions holds:

e Inconsistent effects: one action negates an effect of the other. For example Eat(Cake)
and the persistence of Have(Cake) have inconsistent effects because they disagree on
the effect Have(Cake).

o Interference: one of the effects of one action is the negation of a precondition of the
other. For example Eat(Cake) interferes with the persistence of Have(Cake) by negat-
ing its precondition.

e Competing needs: one of the preconditions of one action is mutually exclusive with a
precondition of the other. For example, Bake(Cake) and Eat(Cake) are mutex because
they compete on the value of the Have(Cake) precondition.

A mutex relation holds between two literals at the same level if one is the negation of the other
or if each possible pair of actions that could achieve the two literals is mutually exclusive.
This condition is called inconsistent support. For example, Have(Cake) and Eaten(Cake)
are mutex in S; because the only way of achieving Have(Cake), the persistence action, is
mutex with the only way of achieving Eaten(Cake), namely Eat(Cake). In Sy the two
literals are not mutex because there are new ways of achieving them, such as Bake(Cake)
and the persistence of Eaten(Cake), that are not mutex.

Planning graphsfor heuristic estimation

A planning graph, once constructed, is a rich source of information about the problem. For
example, a literal that does not appear in the final level of the graph cannot be achieved by
any plan. This observation can be used in backward search as follows: any state containing
an unachievable literal has a cost h(n)=oo. Similarly, in partial-order planning, any plan
with an unachievable open condition has h(n)