
Simulated annealing overview
Franco Busetti

1 Introduction and background
Note: Terminology will be developed within the text by means of italics.

Simulated annealing (SA) is a random-search technique which exploits an analogy between the way in
which a metal cools and freezes into a minimum energy crystalline structure (the annealing process) and
the search for a minimum in a more general system; it forms the basis of an optimisation technique for
combinatorial and other problems.

Simulated annealing was developed in 1983 to deal with highly nonlinear problems. SA approaches the
global maximisation problem similarly to using a bouncing ball that can bounce over mountains from
valley to valley. It begins at a high "temperature" which enables the ball to make very high bounces,
which enables it to bounce over any mountain to access any valley, given enough bounces. As the
temperature declines the ball cannot bounce so high, and it can also settle to become trapped in relatively
small ranges of valleys. A generating distribution generates possible valleys or states to be explored. An
acceptance distribution is also defined, which depends on the difference between the function value of
the present generated valley to be explored and the last saved lowest valley. The acceptance distribution
decides probabilistically whether to stay in a new lower valley or to bounce out of it. All the generating
and acceptance distributions depend on the temperature.

It has been proved that by carefully controlling the rate of cooling of the temperature, SA can find the
global optimum. However, this requires infinite time. Fast annealing and very fast simulated re-
annealing (VFSR) or adaptive simulated annealing (ASA) are each in turn exponentially faster and
overcome this problem.

2 The method
SA's major advantage over other methods is an ability to avoid becoming trapped in local minima. The
algorithm employs a random search which not only accepts changes that decrease the objective function f
(assuming a minimisation problem), but also some changes that increase it. The latter are accepted with a
probability

p = exp (-δf / T) (1)

where δf is the increase in f and T is a control parameter, which by analogy with the original application
is known as the system ''temperature" irrespective of the objective function involved. The implementation
of the basic SA algorithm is straightforward. The following figure shows its structure:

2

The structure of the simulated annealing algorithm

The following elements must be provided:

Ø a representation of possible solutions
Ø a generator of random changes in solutions
Ø a means of evaluating the problem functions and
Ø an annealing schedule - an initial temperature and rules for lowering it as the search progresses.
These steps are discussed in section 5.

The following figure shows the progress of a SA search on the two-dimensional Rosenbrock function,
f = [(1-x1)2+ 100 (x2 - x1

2)]2 :

3

Search pattern

Although this function is amenable to solution by more efficient methods, it is useful for purposes of
comparison. Each of the solutions accepted in a 1000-trial search is shown (marked by symbols). The
algorithm employed the adaptive step size selection scheme of equations (5) and (6) shown later in
section 5.1. It is clear that the search is wide-ranging but ultimately concentrates in the neighbourhood of
the optimum.

The following figure shows the progress in reducing the objective function for the same search:

Objective function reduction

Initially, when the annealing temperature is high, some large increases in f are accepted and some areas
far from the optimum are explored. As execution continues and T falls, fewer uphill excursions are

4

tolerated (and those that are tolerated are of smaller magnitude). The last 40% of the run is spent
searching around the optimum. This performance is typical of the SA algorithm.

3 Strengths

Simulated annealing can deal with highly nonlinear models, chaotic and noisy data and many constraints.
It is a robust and general technique.

Its main advantages over other local search methods are its flexibility and its ability to approach global
optimality.

The algorithm is quite versatile since it does not rely on any restrictive properties of the model.

SA methods are easily "tuned". For any reasonably difficult nonlinear or stochastic system, a given
optimisation algorithm can be tuned to enhance its performance and since it takes time and effort to
become familiar with a given code, the ability to tune a given algorithm for use in more than one problem
should be considered an important feature of an algorithm.

4 Weaknesses

Since SA is a metaheuristic, a lot of choices are required to turn it into an actual algorithm.

There is a clear tradeoff between the quality of the solutions and the time required to compute them.

The tailoring work required to account for different classes of constraints and to fine-tune the parameters
of the algorithm can be rather delicate.

The precision of the numbers used in implementation is of SA can have a significant effect upon the
quality of the outcome.

5 Comparison with other methods

Any efficient optimisation algorithm must use two techniques to find a global maximum: exploration to
investigate new and unknown areas in the search space, and exploitation to make use of knowledge found
at points previously visited to help find better points. These two requirements are contradictory, and a
good search algorithm must find a tradeoff between the two.

Neural nets
The main difference compared with neural nets is that neural nets learn (how to approximate a function)
while simulated annealing searches for a global optimum. Neural nets are flexible function approximators
while SA is an intelligent random search method. The adaptive characteristics of neural nets are a huge
advantage in modelling changing environments. However, the power-hungriness of SA limits its use as a
real-time application.

Genetic algorithms
Direct comparisons have been made between ASA/VFSR and publicly-available genetic algorithm (GA)
codes, using a test suite already adapted and adopted for GA. In each case, ASA outperformed the GA
problem. GA is a class of algorithms that are interesting in their own right; GA was not originally
developed as an optimisation algorithm, and basic GA does not offer any statistical guarantee of global

5

convergence to an optimal point. Nevertheless, it should be expected that GA may be better suited for
some problems than SA.

Random Search
The brute force approach for difficult functions is a random, or an enumerated search. Points in the search
space are selected randomly, or in some systematic way, and their fitness evaluated. This is an
unintelligent strategy, and is rarely used by itself.

Gradient methods
A number of different methods for optimising well-behaved continuous functions have been developed
which rely on using information about the gradient of the function to guide the direction of search. If the
derivative of the function cannot be computed, because it is discontinuous, for example, these methods
often fail. Such methods are generally referred to as hillclimbing. They can perform well on functions
with only one peak (unimodal functions). But on functions with many peaks, (multimodal functions), they
suffer from the problem that the first peak found will be climbed, and this may not be the highest peak.
Having reached the top of a local maximum, no further progress can be made.

Iterated Search
Random search and gradient search may be combined to give an iterated hillclimbing search. Once one
peak has been located, the hillclimb is started again, but with another, randomly chosen, starting point.
This technique has the advantage of simplicity, and can perform well if the function does not have too
many local maxima. However, since each random trial is carried out in isolation, no overall picture of the
"shape" of the domain is obtained. As the random search progresses, it continues to allocate its trials
evenly over the search space. This means that it will still evaluate just as many points in regions found to
be of low fitness as in regions found to be of high fitness.

Both SA and GAs, by comparison, start with an initial random population, and allocate increasing trials
to regions of the search space found to have high fitness. This is a disadvantage if the maximum is in a
small region, surrounded on all sides by regions of low fitness. This kind of function is difficult to
optimise by any method, and here the simplicity of the iterated search usually wins.

6 Suitability

SA appears rapidly to be becoming an algorithm of choice when dealing with financial instruments [1].
Standard nested regression and local-search methods usually are applied to develop hybrid securities, e.g.
combining markets in interest rates, foreign exchange, equities and commodities by linking them via
options, futures, forwards, and swaps, to increase profits and reduce risks in investments as well as in
trading [2].

However, the complexity and nonlinearity of these multivariate systems, and the increasing interest of
including information from more sophisticated modelling into trading rules, have called for more
sophisticated numerical algorithms. As such, the parameters are a mix of continuous and discrete sets, but
these seem to be able to be processed quite smoothly by adaptive simulated annealing (ASA). One of the
several strong features of these algorithms is their flexibility in accommodating many ad hoc constraints,
rules, etc., as well as algebraic models.

The potential uses for SA in stock price modelling may be limited. However, simulated annealing has
been reasonably successfully used in the solution of a complex portfolio selection model [3]. The
algorithm was able to handle more classes of constraints than most other techniques. Trading constraints

6

were, however, difficult to handle because of the discontinuities they introduced in the space of feasible
portfolios.

 An example of the power of SA (ASA), coupled with new statistical mechanical modelling techniques, is
that interest rates can be fitted to the data much better than in previously published studies [4]. One study
has used SA on a set of several econometric problems [5], including cost functions arising in the
monetary theory of exchange rate determination, a study of firm production efficiency, and a neural net
model which generates chaos reputed to mirror some economic and financial series. The authors
demonstrated that their SA algorithm performed better, e.g. at least more reliably finding more optima,
than other numerical techniques such as a genetic algorithms and a quasi-Newton algorithm.

The technique appears well suited to asset allocation problems with constraints.

7. Practical implementation

7.1 Solution representation and generation

When attempting to solve an optimisation problem using the SA algorithm, the most obvious
representation of the control variables is usually appropriate. However, the way in which new solutions
are generated may need some thought. The solution generator should

Ø introduce small random changes, and
Ø allow all possible solutions to be reached.

For problems with continuous control values new trial solutions can be generated according to the
formula:

xi +1 = xi + Qu (2)

where u is a vector of random numbers in the range (-√3,+√3) so that each has zero mean and unit
variance, and Q is a matrix that controls the step size distribution. In order to generate random steps with
a covariance matrix S, Q is found by solving

S = QQT (3)

by Cholesky decomposition, for example. S should be updated as the search progresses to include
information about the local topography:

Si +1 = (1-α) Si + αωX (4)

where matrix X measures the covariance of the path actually followed and the damping constant α
controls the rate at which information from X is folded into S with weighting ω. One drawback of this
scheme is that the solution of equation (3), which must be done every time S is updated, can represent a
substantial computational overhead for problems with high dimensionality. In addition, because the
probability of an increase in the objective function being accepted, given by equation (1), does not reflect
the size of the step taken, S must be estimated afresh every time the system temperature is changed.

An alternative strategy is to generate solutions according to the formula:

7

xi +1 = xi + Du (5)

where u is now a vector of random numbers in the range (-1, 1) and D is a diagonal matrix which defines
the maximum change allowed in each variable. After a successful trial, i.e. after an accepted change in the
solution, D is updated:

Di +1 = (1-α) Di + αωR (6)

where α and ω perform similar roles and R is a diagonal matrix the elements of which consist of the
magnitudes of the successful changes made to each control variable. This tunes the maximum step size
associated with each control variable towards a value giving acceptable changes.

When using this strategy it is recommended that the probability of accepting an increase in f be changed
from that given by equation (1) to:

p = exp (-δf / Td) (7)

where d is the average step size, so that δf / d is a measure of the effectiveness of the change made. As the
size of the step taken is considered in calculating p, D does not need to be adjusted when T is changed.

For problems with integer control variables, the simple strategy whereby new trial solutions are generated
according to the formula:

xi +1 = xi + u (8)

where u is a vector of random integers in the range (-1, 1) often suffices.

For combinatorial or permutation optimisation problems, the solution representation and generation
mechanism(s) will necessarily be problem-specific.

7.2 Solution evaluation

The SA algorithm does not require or deduce derivative information, it merely needs to be supplied with
an objective function for each trial solution it generates. Thus, the evaluation of the problem functions is
essentially a "black box" operation as far as the optimisation algorithm is concerned. Obviously, in the
interests of overall computational efficiency, it is important that the problem function evaluations should
be performed efficiently, especially as in many applications these function evaluations are by far the most
computationally intensive activity.

Some thought needs to be given to the handling of constraints when using the SA algorithm. In many
cases the routine can simply be programmed to reject any proposed changes which result in constraint
violation, so that a search of feasible space only is executed.

However, there are two important circumstances in which this approach cannot be followed:

Ø if there are any equality constraints defined on the system, or

8

Ø if the feasible space defined by the constraints is (suspected to be) disjoint, so that it is not possible to
move between all feasible solutions without passing through infeasible space.

In either case the problem should be transformed into an unconstrained one by constructing an augmented
objective function incorporating any violated constraints as penalty functions:

fA(x) =f(x) + 1/T wT cV(x) (9)

where w is a vector of nonnegative weighting coefficients and the vector cV quantifies the magnitudes of
any constraint violations. The inverse dependence of the penalty on temperature biases the search
increasingly heavily towards feasible space as it progresses.

7.3 Annealing schedule

Through equation (1) or (7), the annealing schedule determines the degree of uphill movement permitted
during the search and is thus critical to the algorithm's performance. The principle underlying the choice
of a suitable annealing schedule is easily stated: the initial temperature should be high enough to "melt"
the system completely and should be reduced towards its "freezing point" as the search progresses.
Choosing an annealing schedule for practical purposes is something of an art.

The standard implementation of the SA algorithm is one in which homogeneous Markov chains of finite
length are generated at decreasing temperatures. The following parameters should therefore be specified:

Ø an initial temperature T0

Ø a final temperature Tf or a stopping criterion
Ø a length for the Markov chains and
Ø a rule for decrementing the temperature.

Initial Temperature

A suitable initial temperature T0 is one that results in an average increase of acceptance probability p0 of
about 0.8. In other words, there is an 80% chance that a change which increases the objective function
will be accepted. The value of T0 will clearly depend on the scaling of f and, hence, be problem-specific.
It can be estimated by conducting an initial search in which all increases are accepted and calculating the
average objective increase observed δf+. T0 is then given by:

T0 = -δf+ / ln(p0) (10)

Final Temperature

In some simple implementations of the SA algorithm the final temperature is determined by fixing

Ø the number of temperature values to be used, or
Ø the total number of solutions to be generated.

Alternatively, the search can be halted when it ceases to make progress. Lack of progress can be defined
in a number of ways, but a useful basic definition is

9

Ø no improvement (i.e. no new best solution) being found in an entire Markov chain at one temperature,
combined with

Ø the acceptance ratio falling below a given (small) value pf .

Length of Markov Chains

An obvious choice for Lk, the length of the k-th Markov chain, is a value that depends on the size of the
problem, so Lk is independent of k. Alternatively it can be argued that a minimum number of transitions
Nmin should be accepted at each temperature. However, as Tk approaches 0, transitions are accepted with
decreasing probability so the number of trials required to achieve Nmin acceptances approaches 1 . Thus,
in practice, an algorithm in which each Markov chain is terminated after

Ø Lk transitions or
Ø Nmin acceptances,

whichever comes first, is a suitable compromise.

Decrementing the Temperature

The simplest and most common temperature decrement rule is:

Tk +1 = αTk (11)

where α is a constant close to, but smaller than, 1. This exponential cooling scheme (ECS) was first
proposed with α= 0.95. In a linear cooling scheme (LCS) in which T is reduced every L trials:

Tk +1 = Tk - T (12)

The reductions achieved using the two schemes have been found to be comparable, and the final value of
f is, in general, improved with slower cooling rates, at the expense of greater computational effort. The
algorithm performance depends more on the cooling rate ∆T/L than on the individual values of ∆T and L.
Obviously, care must be taken to avoid negative temperatures when using the LCS.

Random number generation

A significant component of an SA code is the random number generator, which is used both for
generating random changes in the control variables and for the (temperature dependent) increase-
acceptance test. It is important, particularly when tackling large scale problems requiring thousands of
iterations, that the random number generator used have good spectral properties.

8. Summary

As with genetic algorithms a major advantage of SA is its flexibility and robustness as a global search
method. It is a "weak method" which does not use gradient information and makes relatively few
assumptions about the problem being solved. It can deal with highly nonlinear problems and non-
differentiable functions as well as functions with multiple local optima. It is also amenable to parallel
implementation. Simulated annealing is a very powerful and important tool in a variety of disciplines.

10

A disadvantage is that the SA methods are computation-intensive. There exist faster variants of basic
simulated annealing, but these apparently are not as quite easily coded and so they are not widely used.
More well-documented, user-friendly code (e.g. menu-driven) would help.

As with neural nets and GAs, SA looks highly promising for portfolio optimisation and asset allocation
problems, because the driving variables are highly nonlinear, noisy and often chaotic; it appears less
appropriate for modelling financial time series.

9. References

1. Ingber, L., 1993, "Simulated annealing: practice versus theory", Mathl. Comput. Modelling 18, 11,
29-57.

2. Deboeck, G. J. [Ed.], "Trading On The Edge", Wiley, 1994.
3. Crama, Y., and M. Schyns, 1999, "Simulated annealing for complex portfolio selection problems."
4. Goffe, W.L., G.D. Ferrier and J. Rogers, 1994, "Global optimisation of statistical functions with

simulated annealing", J. Econometrics 60 (1/2), 65-100.
5. Ingber, L., M.F. Wehner, G.M. Jabbour and T.M. Barnhill, 1991, "Application of statistical

mechanics methodology to term-structure bond-pricing models", Mathl. Comput. Modelling 15 (11),
77-98.

