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Transition probability matrix A

a.=P(q =j|q_=1i) 1<i,j<N
Special initial probability vector n
7.=P(q =i) 1<i<N

Constraints:
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symbols

» But spectral feature vectors are real-
valued!

- How to deal with real-valued features?
- Decoding: Given ot, how to compute P(ot|q)

- Learning: How to modify EM to deal with
real-valued features
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N(o,, 0) = — 1 _e=ho=m = o=p)

(2m)Z|D-1)2

- The distribution is completely described by the D
parameters representing g and the D(D+1)/2
parameters representing the symmetric covariance

matrix 2



Bad News!!!

Al

- Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides



e Weighted sum of NV Gaussians:
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e Can model arbitrary densities.

e Complexity increases linearly
-1 4 Wlth ..'-I\r



source it comes.

+ Summary: each state has a likelihood function
parameterized by:
- M Mixture weights
- M Mean Vectors of dimensionality D
- Either
* M Covariance Matrices of DxD
- Or more likely
» M Diagonal Covariance Matrices of DxD
which is equivalent to
* M Variance Vectors of dimensionality D



ITTerent means

: P(O ‘ q)° P(o|q) is highest here at mean

P(olq) /P(olq is low here, very far from mean)




- In the Expectation step, It Tries o "guess” the
values of the zt's.

- In the Maximization s’rer, it updates the
parameters of our models based on our guesses.

- The random variables zt indicates which of the N

Gaussians each ot had come from.

- Note that the zt's are latent random variable,

meaning they are hidden/unobserved. This is what
make our estimation problem difficult.



: : 1
Mixture weight update: m ==, P (0)
t=1
2. Pi(0)o,
: Hi = tle
Mean vector update: > p,(0)
> 0, (x)07
Covariance matrix update: 2y == - i
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« Backward (3) algorithm

p. (i) = Z ag‘b; OB (1)




algorithms

*  One simple method for “splitting":
- Compute global mean p and global variance

- Split into two Gaussians, with means pte (sometimes ¢ is
0.2

- Run Forward-Backward to retrain
- (Go to 2 until we have 16 mixtures

*  Or choose starting clusters with the K-means
algorithm



 Positive definite.

 D(D+1)/2 parameters
when x has D
dimensions.



- This isn't true for FFT features, but is true
for MFCC features.

+ Computation and storage much cheaper if
diagonal covariance.

- I.e. only diagonal entries are non-zero

» Diagonal contains the variance of each
dimension cii2

- So this means we consider the variance of each

acoustic feature (dimension) separately



« D parameters.

 Assumes
iIndependence
between components
of X.
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. M'agyar nyelvi bészédtechnolégiai
alapismeretek Multimédias szoftver CD -
Nikol Kkt. 2002.

* Dan Jurafsky — "CS Speech Recognition

and Synthesis” Lecture 8 -10 Stanford
University, 2005
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