Modern Portfolio Theory

History of MPT

- ▶ 1952 Horowitz
- ► CAPM (Capital Asset Pricing Model) 1965 Sharpe, Lintner, Mossin
- ► APT (Arbitrage Pricing Theory) 1976 Ross

What is a portfolio?

- ► Italian word
- Portfolio weights indicate the fraction of the portfolio total value held in each asset
- x_i = (value held in the i-th asset)/(total portfolio value)
- ▶ By definition portfolio weights must sum to one:

$$x_1 + x_2 + \ldots + x_{n-1} + x_n = 1$$

Data needed for Portfolio Calculation

- \triangleright Expected returns for asset i : $E(r_i)$
- ▶ Variances of return for all assets i : $Var(r_i)$
- Covariances of returns for all pairs of assets I

and
$$\mathbf{j}: Cov(r_i, r_j)$$

Where do we obtain this data?

Compute them from knowledge of the probability distribution of returns (population parameters)

 Estimate them from historical sample data using statistical techniques (sample statistics)

Examples

Market Economy	Probability	Return
Normal environment	1:3	10%
Growth	1:3	30%
Recession	1:3	-10%

$$E(r) = 1/3(0,30) + 1/3(0,10) + 1/3(-0,10) = 0,10$$

$$Var(r) = 1/3(0,30-0,10)^{2} + 1/3(0,10-0,10)^{2} + 1/3(-0,10-0,10)^{2} =$$

$$= 1/3(0,20)^{2} + 1/3(0,0)^{2} + 1/3(-0,20)^{2} = 0,0267$$

Portfolio of two assets(1)

➤ The portfolio's expected return is a weighted sum of the expected returns of assets 1 and 2.

$$E(r_{v}) = E(w_{1}r_{1}) + E(w_{2}r_{2}) = w_{1}E(r_{1}) + w_{2}E(r_{2})$$

$$Var(r_{v}) = E(r_{v}^{2}) + E(r_{v})^{2} = w_{1}^{2} \left[E(r_{1}^{2}) - E(r_{1})^{2} \right] +$$

$$+w_{2}^{2} \left[E(r_{2}^{2}) - E(r_{2})^{2} \right] + 2w_{1}w_{2} \left[E(r_{1}r_{2}) - E(r_{1})E(r_{2}) \right] =$$

$$= w_{1}^{2}Var(r_{1}) + w_{2}^{2}Var(r_{2}) + 2w_{1}w_{2}Cov(r_{1}, r_{2})$$

Portfolio of two assets(2)

- ► The variance is the square-weighted sum of the variances plus twice the cross-weighted covariance.
- ▶ If

$$\mu_{v} = E(r_{v}), \sigma_{v} = \sqrt{Var(r_{v})}, \rho_{1,2} = \frac{Cov(r_{1}, r_{2})}{\sigma_{1}\sigma_{2}}$$

then

Where $P_{1,2}$ is the corellation

$$\mu_{v} = w_{1}\mu_{1} + w_{2}\mu_{2}$$

$$\sigma_{v}^{2} = w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + 2w_{1}w_{2}\rho_{1,2}\sigma_{1}\sigma_{2}$$

Portfolio of Multiple Assets(1)

- ▶ We can write weights in form of matrix $1 = uw^T$
- ► also the expected returns can be write in form of vector $m = [\mu_1, \mu_2, ..., \mu_n]$
- > and let C the covariance matrix

$$C = \left(egin{array}{ccc} c_{1,1} & \dots & c_{1,n} \\ dots & \ddots & dots \\ c_{n,1} & \dots & c_{n,n} \end{array}
ight)$$

where
$$c_{i,j} = Cov(r_i, r_j)$$

Portfolio of Multiple Assets(2)

- ▶ Because C is symmetric then \exists C^{-1}
- ▶ Then the expected return is equal with:

$$\mu_{v} = mw^{T}$$

► Variance of returns is equal with:

$$\sigma_{v}^{2} = w C w^{T}$$

Proof

$$\mu_{v} = E(r_{v}) = E\left(\sum_{i} w_{i} r_{i}\right) = \sum_{i} w_{i} q \mu_{i} = m w^{T}$$

$$\sigma_v^2 = Var(r_v) = Var\left(\sum_i w_i r_i\right) = Cov\left(\sum_i w_i r_i \sum_j w_j r_j\right) =$$

$$= \sum_{i,j} w_i w_j c_{i,j} = w C w^T$$

Correlation

$$\sigma_{v} = \sqrt{w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + \dots + w_{n}^{2}\sigma_{n}^{2} + \sum_{i,j}^{n,n} 2\rho_{i,j}w_{i}\sigma_{i}w_{j}\sigma_{j}}$$

if
$$\rho_{i,j} = 1 \ \forall i, j \in \overline{i,n}$$

$$\sigma_{v} = \sqrt{w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + \dots + w_{n}^{2}\sigma_{n}^{2} + \sum_{i,j}^{n,n} 2w_{i}\sigma_{i}w_{j}\sigma_{j}}$$

$$\sigma_{v} = w_{1}\sigma_{1} + w_{2}\sigma_{2} + \ldots + w_{n}\sigma_{n} = \sigma_{v gen}$$

Correlation(2)

▶ An equally-weighted portfolio of *n* assets:

$$w_{i} = \frac{1}{n} \quad \sigma_{i} = \sigma_{gen}$$

$$\sigma_{v} = \left(\frac{1}{n}\sigma_{gen}\right)_{1} + \dots + \left(\frac{1}{n}\sigma_{gen}\right)_{n}$$

$$\sigma_{v} = n \frac{1}{n}\sigma_{gen} = \sigma_{gen}$$

If the correlation is equal with 1 then between i and j is linear connection; if i grow then j grow to and growth rate is the same

Correlation(3)

$$if \quad \rho_{i,j} = 0 \qquad w_i = \frac{1}{n} \quad \sigma_i = \sigma_{gen}$$

$$\sigma_{v} = \sqrt{\left(\frac{1}{n}\sigma_{gen}\right)_{1}^{2} + \ldots + \left(\frac{1}{n}\sigma_{gen}\right)_{n}^{2}}$$

$$\sigma_{v} = \sqrt{n \left(\frac{1}{n} \sigma_{gen}\right)^{2}} \Rightarrow \sigma_{v} = \frac{\sqrt{n}}{n} \sigma_{gen}$$

Diversification

Diversification(2)

If we have 3 element in our portfolio than the variance of portfolio is much lower

Diversification(3)

- Reducing risk with this technique is called diversification
- Generally the more different the assets are, the greater the diversification.
- ► The diversification effect is the reduction in portfolio standard deviation, compared with a simple linear combination of the standard deviations, that comes from holding two or more assets in the portfolio
- The size of the diversification effect depends on the degree of correlation

Optimal portfolio selection

- How to choose a portfolio?
- ► Minimize risk of a given expected return? Or
- ► Maximize expected return for a given risk.

Minimize
$$\sigma_v^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{i,j}$$
 subject to $(1) \sum_{i=1}^n w_i = 1$

$$(2)\sum_{i=1}^n w_i r_i = \mu_v$$

Optimal portfolio selection (2)

Solving optimal portfolios "graphically"

Solving optimal portfolios

The locus of all frontier portfolios in the plane is called *portfolio frontier*

The upper part of the portfolio frontier gives efficient frontier portfolios

Minimal variance portfolio

Portfolio frontier with two assets

- Let $r_1 > r_2$ and let $\overline{w_1} = w$ and $w_2 = 1 w$
- Then $\mu_{v} = wr_1 + (1-w)r_2$

$$\sigma_{v}^{2} = w^{2}\sigma_{1}^{2} + (1 - w)\sigma_{2}^{2} + 2w(1 - w)\sigma_{1,2}$$

For a given μ_v there is a unique w that determines the portfolio with expected return

$$w = \frac{\mu_v - r_2}{r_1 - r_2}$$

Minimal variance portfolio

- We use $1 = uw^T$ and $\sigma_v^2 = wCw^T$
- Lagrange function $L(w,\lambda) = wCw^T \lambda uw^T$

$$2wC - \lambda u = 0 \Rightarrow w = \frac{\lambda}{2}uC^{-1} / u^{T}$$

$$\Rightarrow 1 = \frac{\lambda}{2} u C^{-1} u^{T} \Rightarrow \lambda = \frac{2}{u C^{-1} u^{T}} \Rightarrow w = \frac{u C^{-1}}{u C^{-1} u^{T}}$$

Minimal variance curve

$$w = \frac{\left[mC^{-1}m^{T} - \mu_{v}uC^{-1}m^{T} \right]uC^{-1} + \left[\mu_{v}uC^{-1}u^{T} - mC^{-1}u^{T} \right]mC^{-1}}{uC^{-1}u^{T}mC^{-1}m^{T} - uC^{-1}m^{T}mC^{-1}u^{T}}$$

Where $mu_v = mw^{T}$

Some examples in MATLAB

$$\mu_1 = 0.2 \quad \sigma_1 = 0.25 \quad \rho_{1,2} = \rho_{2,1} = 0.3$$
 $\mu_2 = 0.13 \quad \sigma_2 = 0.28 \quad \rho_{2,3} = \rho_{3,2} = 0.0 \quad m = \begin{bmatrix} 0.2 & 0.13 & 0.17 \end{bmatrix}$
 $\mu_3 = 0.17 \quad \sigma_3 = 0.20 \quad \rho_{1,3} = \rho_{3,1} = 0.15 \quad u = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

We calculate C and C^{-1}

$$w = \frac{uC^{-1}}{uC^{-1}u^{T}} = \begin{bmatrix} -0.091 & 0.0679 & 1.0232 \end{bmatrix}$$

$$w \cong \left[1.578 - 8.614 \mu_{v} \ 0.845 - 2.769 \mu_{v} \ -1.422 + 11.384 \mu_{v}\right]$$

Using MATLAB

Examples in MATLAB(2)

- Frontcon function; with this function we can calculate some efficient portfolio
- [pkock, preturn, pweigths] =
 =frontcon(returns, Cov, n, preturn, limits, group, grouplimits)

Examples in MATLAB

- pkock covariances of the returned portfolios
- preturn returns of the returned portfolios
- pweighs weighs of the returned portfolios
- returns the stocks return
- cov covariance matrix
- n number of portfolios
- group, group limits min and max weigh
- Other functions: portalloc, portopt