
Hidden Markov Models in 
Bioinformatics

By
Máthé Zoltán
Kőrösi Zoltán

2006



Outline
� Markov Chain
� HMM (Hidden Markov Model)
� Hidden Markov Models in Bioinformatics
� Gene Finding
� Gene Finding Model
� Viterbi algorithm
� HMM Advantages
� HMM Disadvantages
� Conclusions



Markov Chain
Definition: A Markov chain is a triplet (Q, {p(x1 = s)}, A), where:

● Q is a finite set of states. Each state corresponds to a symbol in
the alphabet 

● p is the initial state probabilities.
● A is the state transition probabilities, denoted by ast for each s, t ∈

Q.
● For each s, t ∈ Q the transition probability is:                                  

ast ≡ P(xi = t|xi-1 = s)

Output: The output of the model is the set of states at each instant 
time => the set of states are observable

Property: The probability of each symbol xi depends only on the value 
of the preceding symbol xi-1 :  P (xi | xi-1,…, x1) = P (xi | xi-1)



Example of a Markov 
Model



HMM (Hidden Markov Model
Definition: An HMM is a 5-tuple (Q, V, p, A, E), where:

● Q is a finite set of states, |Q|=N
● V is a finite set of observation symbols per state, |V|=M
● p is the initial state probabilities.
● A is the state transition probabilities, denoted by ast for each     

s, t ∈ Q.

● For each s, t ∈ Q the transition probability is:                             
ast ≡ P(xi = t|xi-1 = s)

● E is a probability emission matrix, esk ≡ P (vk at time t | qt = 
s)

Output: Only emitted symbols are observable by the system 
but not the underlying random walk between states  -> “hidden”



Example of a Hidden 
Markov Model



The HMMs can be applied efficently to well known biological 

problems. That why HMMs gained popularity in bioinformatics, and

are used for a variety of biological problems like:

protein secondary structure recognition

multiple sequence alignment

gene finding 



What HMMs do?

A HMM is a statistical model for sequences  of discrete simbols.

Hmms are used for many years in speech recognition.

HMMs are perfect for the gene finding task. 

Categorizing nucleotids within a genomic sequence can be 

interpreted as a clasification problem with a set of ordered 

observations that posses hidden structure, that is a suitable 

problem for the application of hidden Markov models.



Hidden Markov Models in 
Bioinformatics

The most challenging and  interesting problems in 

computational biology at  the moment is finding genes in DNA 

sequences. With so many genomes being  sequenced so rapidly, it 

remains important to begin by identifying genes computationally.



Gene Finding

Gene finding refers to identifying stretches of nucleotide 

sequences in genomic DNA that are biologically functional. 

Computational gene finding deals with 

algorithmically identifying protein-coding genes. 

Gene finding is not an easy task, as gene structure can be very 

complex.



Objective:
To find the coding and non-coding regions of an unlabeled 

string of DNA nucleotides

Motivation:
Assist in the annotation of genomic data produced by 

genome sequencing methods
Gain insight into the mechanisms involved in 

transcription, splicing and other processes



Structure of a gene



The gene is discontinous, coding both: 

exons (a region that encodes a sequence of amino acids).

introns (non-coding polynucleotide sequences that 

interrupts the coding sequences, the exons, of a gene) .





In gene finding there are some important biological rules:

Translation starts with a start codon (ATG).

Translation ends with a stop codon (TAG, TGA, TAA).

Exon can never follow an exon without an intron in 
between.

Complete genes can never end with an intron.



Gene Finding Models

When using HMMs first we have to specify a model.

When choosing the model we have to take into consideration 

their complexity by:

The number of states and allowed transitions.

How sophisticated the learning methods are.

The learning time.



The Model consists of a finite set of states, each of 

which can emit a symbol from a finite alphabet with a fixed 

probability distribution over those symbols, and a set of 

transitions between states, which allow the model to 

change state after each symbol is emitted. 

The models can have different complexity, and different 

built in biological knowledge.



The model for the Viterbi 
algorithm



states = ('Begin', 'Exon', 'Donor', 'Intron')

observations = ('A', 'C', 'G', 'T')



The Model Probabilities

� Transition probability:

transition_probability = {

'Begin' : {'Begin' : 0.0, 'Exon' : 1.0, 'Donor' : 0.0, 'Intron' : 0.0},

'Exon' : {'Begin' : 0.0, 'Exon' : 0.9, 'Donor' : 0.1, 'Intron' : 0.0},     

'Donor' : {'Begin' : 0.0, 'Exon' : 0.0, 'Donor' : 0.0, 'Intron' : 1.0},     

'Intron' : {'Begin' : 0.0, 'Exon' : 0.0, 'Donor' : 0.0, 'Intron' : 1.0}

}



� Emission probability:

emission_probability = {

'Begin' : {'A' :0.00 , 'C' :0.00, 'G' :0.00, 'T' :0.00}, 

'Exon' : {'A' :0.25 , 'C' :0.25, 'G' :0.25, 'T' :0.25}, 

'Donor' : {'A' :0.05 , 'C' :0.00, 'G' :0.95, 'T' :0.00}, 

'Intron' : {'A' :0.40 , 'C' :0.10, 'G' :0.10, 'T' :0.40}

}



Viterbi algorithm

Dynamic programming algorithm for finding the most likely 

sequence of hidden states. 

The Vitebi algorithm finds the most probable path – called 

the Viterbi path .



The main idea of the Viterbi algorithm is to find the 

most probable path for each intermediate state, until it 

reaches the end state. 

At each time only the most likely path leading to each 

state survives.



The steps of the Viterbi 
algorithm



viterbi(observations,

states,

start_probability,

transition_probability,

emission_probability)

The arguments of the Viterbi 
algorithm



The working of the Viterbi 
algorithm 

The algorithm works on the mappings T and U.

The algorithm calculates prob, v_path, and v_prob where 

prob is the total probability of all paths from the start to the

current state, v_path is the Viterbi path, and v_prob is the 

probability of the Viterbi path, and

The mapping T holds this information for a given point t in 

time, and the main loop constructs U, which holds similar 

information for time t+1. 



The algorithm computes the triple (prob, v_path, v_prob) for 

each possible next state. 

The total probability of a given next state, total is obtained by 

adding up the probabilities of all paths reaching that state. More 

precisely, the algorithm iterates over all possible source states. 

For each source state, T holds the total probability of all paths 

to that state. This probability is then multiplied by the emission 

probability of the current observation and the transition probability 

from the source state to the next state. 

The resulting probability prob is then added to total.



For each source state, the probability of the Viterbi path to that 

state is known. 

This too is multiplied with the emission and transition 

probabilities and replaces valmax if it is greater than its current 

value. 

The Viterbi path itself is computed as the corresponding argmax 

of that maximization, by extending the Viterbi path that leads to the 

current state with the next state. 

The triple (prob, v_path, v_prob) computed in this fashion is 

stored in U and once U has been computed for all possible next 

states, it replaces T, thus ensuring that the loop invariant holds at 

the end of the iteration.



Example

Input DNA sequence:
CTTCATGTGAAAGCAGACGTAAGTCA

Result:

Total: 2.6339193049977711e-17 – the sum of all the 

calculated probabilities



�Viterbi Path:

['Exon', 'Exon', 'Exon', 'Exon', 'Exon', 'Exon', 'Exon', 

'Exon', 'Exon', 'Exon', 'Exon', 'Exon', 'Exon', 'Exon', 

'Exon', 'Exon', 'Exon', 'Exon', 'Donor', 'Intron', 'Intron', 

'Intron', 'Intron', 'Intron', 'Intron', 'I ntron', 'Intron'] 

� Viterbi probability: 7.0825171238258092e-18 



HMM Advantages

Statistics
HMMs are very powerful modeling tools

Statisticians are comfortable with the theory 
behind hidden Markov models

Mathematical / theoretical analysis of the results 
and processes

Modularity

HMMs can be combined into larger HMMs



Transparency
People can read the model and make sense of it

The model itself can help increase understanding

Prior Knowledge

Incorporate prior knowledge into the architecture

Initialize the model close to something believed to 
be correct

Use prior knowledge to constrain training process



HMM Disadvantages

State independence 

States are supposed to be independent, P(y) must 
be independent of P(x), and vice versa. This 
usually isn’t true

Can get around it when relationships are local

Not good for RNA folding problems



Over-fitting
You’re only as good as your training set

More training is not always good

Local maximums 

Model may not converge to a truly optimal 
parameter set for a given training set

Speed

Almost everything one does in an HMM involves: 
“enumerating all possible paths through the 
model”

Still slow in comparison to other methods



Conclusions
HMMs have problems where they excel, and 

problems where they do not

You should consider using one if:

The problem can be phrased as classification

The observations are ordered

The observations follow some sort of 
grammatical structure

If an HMM does not fit, there’s all sorts of other 
methods to try: Neural Networks, Decision Trees 
have all been applied to Bioinformatics



Bibliography

Pierre Baldi, Soren Brunak: The machine learning 
approach

http://www1.imim.es/courses/BioinformaticaUPF/Ttreballs/
programming/donorsitemodel/index.html

http://en.wikipedia.org/wiki/Viterbi_algorithm

http://en.wikipedia.org/wiki/Viterbi_algorithm


Thank you.


	Hidden Markov Models in Bioinformatics
	Outline
	Markov Chain�
	Example of a Markov Model
	HMM (Hidden Markov Model
	Example of a Hidden Markov Model
	What HMMs do?
	Hidden Markov Models in Bioinformatics
	Gene Finding 
	Structure of a gene
	Gene Finding Models
	The model for the Viterbi algorithm
	The Model Probabilities
	Viterbi algorithm
	The steps of the Viterbi algorithm
	The arguments of the Viterbi algorithm
	The working of the Viterbi algorithm 
	Example
	HMM Advantages
	HMM Disadvantages
	Conclusions
	Bibliography
	Thank you.

