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Gaussian processes

Definition A Gaussian Process is a collection 
of random variables, any finite number of which 
have (consistent) joint Gaussian distributions.

A Gaussian process is fully specified by its mean
function m(x) and covariance function k(x,x’). 

f ~ GP(m,k)



Generalization from 
distribution to process

Consider the Gaussian process given by:

f ~ GP(m,k), and 

We can draw samples from the function f (vector x).
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The algorithm
…

xs = (-5:0.2:5)’; 
ns = size(xs,1); keps = 1e-9;
% the mean function
m = inline(‘0.25*x.^2’);
% the covariance function
K = inline(’exp(-0.5*(repmat(p’’,size(q))-repmat(q,size(p’’))).^2)’);
% the distribution function
fs = m(xs) + chol(K(xs,xs)+keps*eye(ns))’*randn(ns,1);
plot(xs,fs,’.’)

…



The result

The dots are the values generated with algorithm, the two other 
curves have (less correctly) been drawn by connecting sampled 
points.



Posterior Gaussian Process
The GP will be used as a prior for Bayesian inference.
The primary goals computing the posterior is that it can be used to 
make predictions for unseen test cases.
This is useful if we have enough prior information about a dataset at 
hand to confidently specify prior mean and covariance functions.
Notations:

f : function values of training cases (x)
f*  : function values of the test set (x’)

: training means (m(x))
: test means

∑ : covariance (k(x,x’))
∑*  : training set covariance
∑** : training-test set covariance
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Posterior Gaussian Process
The formula for conditioning a joint Gaussian distribution is:

The conditional distribution:

This is the posterior distribution for a specific set of test cases. It is 
easy to verify that the corresponding posterior process

Where   ∑(X,x) is a vector of covariances between every training 
case and x.
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Gaussian noise in the training 
outputs

Every f(x) has a extra covariance with itself only, with a 
magnitude equal to the noise variance:
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Training a Gaussian Process
The mean and covariance functions are parameterized in terms of 
hyperparameters.
For example: 

The hyperparameters: 

The log marginal likelihood:
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Optimizing the marginal 
likelihood

Calculating the partial derivatives: 

With a numerical optimization routine conjugate gradients to find good 
hyperparameter settings. 
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2-dimensional regression 
The training data has an unknown 
Gaussian noise and can be seen 
in the figure 1. 
in MLP network with Bayesian 
learning we needed 2500 samples
With Gaussian Processes  we 
needed only 350 samples to reach 
the "right" distribution 
The CPU time needed to sample 
the 350 samples on a 2400MHz 
Intel Pentium workstation was 
approximately 30 minutes. 
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