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1. History of splines

originally developed for ship-building in the days before 
computer modeling. 

Pierre Bézier
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http://www.macnaughtongroup.com/s
pline_weights.htm

2. What is a spline?

simply a curve

In mathematics a spline is a special function defined piecewise by
polynomials. In computer science the term spline refers to a 
piecewise polynomial curve.

The solution was to place metal weights (called knots) at the 
control points, and bend a thin metal or wooden beam (called a 
spline) through the weights.
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http://en.wikipedia.org/wiki/Piecewis
e

3. Piecewise Polynomial and Splines

1.) A piecewise polynomial ftn f(x) is obtained by dividing of X into 
contiguous intervals, and representing f(x) by a separate polynomial in each 
interval.

- The polynomials are joined together at the interval endpoints (knots) in
such a way that a certain degree of smoothness of the resulting function is 
guaranteed. 
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3. Piecewise Polynomial and Splines
Denote by hj(X) : IR�→ IR the jth transformation of X, j=1…M. We then model

a linear basis expansion in X.

2.) A piecewise constant: 
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- basis function :

- This panel shows a piecewise constant function fit 
to some artificial data. The broken vertical lines
indicate the position of the two knots ξ1 and ξ2.
- The blue curve represents the true function.



3. Piecewise Polynomial and Splines

3.) A piecewise linear

4.) continous piecewise linear
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- basis  function : three additional basis  ftn are needed

- restricted to be continuous at the two knots.
- linear constraints on the parameters:

- the panel shows piecewise linear function fit to the data.
- unrestricted to be continuous at the knots.

- the panel shows piecewise linear function fit to the data.
- restricted to be continuous at the knots.



• - The function in the lower right panel is 
continuous and has continuous first and 
second derivatives.

• - It is known as a cubic spline.
• - basis function:

3. Piecewise Polynomial and Splines

7.) Piecewise cubic polynomial
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- the pictures show a series of piecewise-cubic polynomials fit to the same data,
with increasing orders of continuity at the knots. 



3. Piecewise Polynomial and Splines
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8.) An order-M spline with knot is a piecewise-polynomial of order 
M, and has continuous derivatives up to order M-2.

- a  cubic spline has M=4. Cubic splines are the lowest-oder spline for which the knot-
discontinuity is not visible to the human eye.

- the piecewise-constant function is an order-1 spline, while the continuous piecewise linear
function is an order-2 spline.

In practice the most widely used orders are M=1,2 and 4.



4. Natural Cubic Splines

Natural Cubic Splines

Cubic spline is a spline constructed of piecewise third-order polynomials which pass
through a set of m control points. 

The second derivate of each polynomial is commonly set to zero at the endpoints, 
since this provides a boundary condition that completes the system of m-2 equations. 

This produces a so-called “natural” cubic spline and leads to a simple tridiagonal
system which can be solved easily to give the coefficients of the polynomials.
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5.1 Function Spline

spline(x,y,z,d);
x,y - two vectors or two lists
z   - name
d   - (optional) positive integer or string

The spline function computes a piecewise polynomial approximation to the X Y data
values of degree d (default 3) in the variable z. The X values must be distinct and in
ascending order. There are no conditions on the Y values.

55.. MethodsMethods
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6.1 Maple Spline Function: y=sin(x) and x=[0,6]

> plot(sin(x),x=0..6);
> f:=x->sin(x);
> x1:=[0,1,2,3,4,5,6];
> fx1:=map(f,x1);
> plot([sin(x),spline(x1,fx1,x,'linear')],x=0..6,color=[red,blue],style=[line,line]);
> plot([sin(x),spline(x1,fx1,x,'cubic')],x=0..6,color=[red,blue],style=[line,line]);
> plot([sin(x),spline(x1,fx1,x,2)],x=0..6,color=[red,blue],style=[line,line]);

66.. ApplicationsApplications
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66.. ApplicationsApplications

6.2 Interpolation with cubic spline

The function is f(x)=sin(π/2*x), x∈[-1,1]. Interpolant the function on -1, 0, 1 with
cubic spline, which satisfied the following boundary conditions:

S´(-1)=f’(-1)=0
S´(1)=f’(1)=0 

One seeks the cubic spline in the folowing form:

By stating the interpolant conditions, the continuity of the spline is satisfied:
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6.2 Interpolation with cubic spline
In the same time the first and the second derivate of the spline needs to be also
continous:

One obtains 6 equations involving 8 unknows, and in this way the Hermite condition
needs to be taken into account:

Solve the system of equations. By using the equations 2), 3), 5) and 6) one can reduce
the original system:

66.. ApplicationsApplications
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6.2 Interpolation with cubic spline

Solving this:

One obtains a1-a2=0 and a1+a2=-1 => a1=a2=-1/2.
Finally the sought spline reads as follows:

66.. ApplicationsApplications



7.1 A programme for calculating spline

- procedure polynom creation

> creation_poly:=proc(d1,d2,x1,x2,y1,y2) 
local x,h:
h:=x2-x1:
unapply(y1*(x2-x)/h + y2*(x-x1)/h
-h*h/6*d1*((x2-x)/h-((x2-x)/h)^3)
-h*h/6*d2*((x-x1)/h-((x-x1)/h)^3),x)
end:

77.. ImplementationImplementation ofof SplineSpline
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- Procedure spline
> s:=proc(x::list(numeric),y::list(numeric))

local n,i,j,mat,res,sol,draw,h1,h2,pol:
if nops(x)<>nops(y) then ERROR(„number of x and y most be equal") fi:
n:=nops(x):
mat:=[1,seq(0,j=1..n-1)],[seq(0,j=1..n-1),1]:
res:=0,0:
for i from 2 to n-1 do
h1:=x[i]-x[i-1]:
h2:=x[i+1]-x[i]:
mat:=[seq(0,j=1..i-2),h1*h1,2*(h1*h1+h2*h2),h2*h2,seq(0,j=1..n-i-1)],mat:
res:=6*(y[i+1]-2*y[i]+y[i-1]),res:
od:
sol:=linsolve([mat],[res]):   
draw:=NULL:
for i to n-1 do
pol:=creation_poly(sol[i],sol[i+1],x[i],x[i+1],y[i],y[i+1]):   
draw:=plot(pol(z),z=x[i]..x[i+1]),draw:   
od:
eval(draw):
end:
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7.2 Testing the programme

> test1:=s([0,1/4,1/2,3/4,1],[0,1/16,1/4,9/16,1]):
> display(test1,plot(x^2,x=0..1,color=blue));
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77.. ImplementationImplementation ofof SplineSpline

7.2 Testing the programme

> test2:=s([0,1/100,1/25,1/16,1/4,16/25,1],[0,1/10,1/5,1/4,1/2,4/5,1]):
> display(test2,plot(sqrt(x),x=0..1,color=blue), view=[0..1,0..1]);
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88.. GlossaryGlossary
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piecewise: a piecewise-defined function f(x) of a real variable x is a function whose
definition is given differently on disjoint intervals of its domain. A common example is 
the absolute value function.  

spline: in mathematics a spline is a special function defined piecewise by polynomials.
In computer science the term spline refers to a piecewise polynomial curve.

cubic spline: is a spline constructed of piecewise third-order polynomials which pass
through a set of m control points. The second derivate of each polynomial is commonly
set to zero at the endpoints, since this provides a boundary condition that completes the
system of m-2 equations. This produces a so-called “natural” cubic spline and leads to a 
simple tridiagonal system which can be solved easily to give the coefficients of the
polynomials.
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