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1. History of splines

developed for ship-building in the days before
deling.
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2. What Is a spline?

= simply a curve

In mathematics a spline is a special function defined piecewise by
lynomials. In computer science the term spline refers to a
Ise polynomial curve.

as to place metal weights (called knots) at the
bend a thin metal or wooden beam (called a
eights.




3. Piecewise Polynomial and Splines

polynomial ftn f(x) is obtained by dividing of X into
iguous intervals, and representing f(x) by a separate polynomial in each

e interval endpoints (knots) in
s of the resulting function is
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3. Piecewise Polynomial and Splines

Denote by hi(X) : IRZ— IR the jth transformation of X, j=1...M. We then model

M
F(X) m > Bihi(X)

a linear basis expansion in X.

- basis function :

hi(X) = 1x<e, ha(X) = 1g, < x<és h3(X) = lg,<x

- This panel shows a piecewise constant function fit
some artificial data. The broken vertical lines

e the position of the two knots & and &.
curve represents the true function.
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3. Piecewise Polynomial and Splines

3.) A piecewise linear

Plecewlsa Linsar

- basis function : three additional basis ftn are needed
Rtz = hm(X)X, m=1,...,3

- the panel shows piecewise linear function fit to the data.
- unrestricted to be continuous at the knots.

ed to be continuous at the two knots.
aints on the parameters:

f(&7) = f(&") implies that £y + & 84 = f2 + & Os.

ise linear function fit to the data.
at the knots.

Continsaus Pieceawiza Linear
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3. Piecewise Polynomial and Splines

/.) Piecewise cubic polynomial

Discortinuaies Canlinmus

e - The function in the lower right panel is
continuous and has continuous first and
second derivatives.

e - Itis known as a cubic spline.
- basis function:

6 6

Canfinuows First Denvaive

mX)=1  BX)=X"  hX)=X-a)
B(X)=X  hX)=X h(X)=(X - &)}

lals fit to the same data,
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3. Piecewise Polynomial and Splines

8.) An order-M with knot |&> 7 = 1,---, K| s a piecewise-polynomial of order
and has continuous derivatives up to order M-2.

has M=4. Cubic splines are the lowest-oder spline for which the knot-
visible to the human eye.

ction is an order-1 spline, while the continuous piecewise linear

are M=1,2 and 4.
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4. Natural Cubic Splines

Natural Cubic Splines

IS a spline constructed of piecewise third-order polynomials which pass
set of m control points.

te of each polynomial is commonly set to zero at the endpoints,
oundary condition that completes the system of m-2 equations.

ural” cubic spline and leads to a simple tridiagonal
Ily to give the coefficients of the polynomials.

11
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5. Methods

.1 Function Spline

spline(x,y,z,d);
or two lists
integer or string
ewise polynomial approximation to the X Y data

lable z. The X values must be distinct and in
the Y values.
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6. Applications

aple Spline Function: y=sInN(X) and X=[0,6]

x=0..6);

‘linear*)],x=0..6,color=[red,blue],style=[line,line]);
pic')],x=0..6,color=[red,blue],style=[line,line]);
)..6,color=[red,blue],style=[linge,line]);
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6. Applications

6.2 Interpolation with cubic spline

unction is f(x)=sin(n/2*x), xe[-1,1]. Interpolant the function on -1, 0, 1 with
Ine, which satisfied the following boundary conditions:

S’ (-1)=f(-1)=0

S’ (1)=f’(1)=0
line in the folowing form:

J,P;{Tﬁ) = ﬂ'l;.,;3 +bl;r;l +eyx-+d, haxe [—1; G]
1_3(-1'}= ﬂz.‘fﬂ —E;i.}_:f2 +C,X+d,, haxe [111]

continuity of the spline is satisfied:
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6. Applications

6.2 Interpolation with cubic spline
n the same time the first and the second derivate of the spline needs to be also

P(x)=3ax* +2bx+c, Plx)=6ax+2b . (i=12)
5) Fi'{ﬂ} = szm} = €=
6) -’-Eﬂ"j )= sz{{:}} < b =b,

Involving 8 unknows, and in this way the Hermite condition

7) PB(-1)=3a,-2b,+¢, =0
8) PBl(1)=3a,+2b,+c, =0
2 equations 2), 3), 5) and 6) one can reduce

b
4) a,+b+¢ =1

7) 3a,-2b,+c¢,=0
8 3a,+2b,+c; =0

—a+ b —c,=-1

15
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6. Applications

6.2 Interpolation with cubic spline

4)-1) a,+a;+2c,=2 = a;+a,=2-2c
3 .
7) +8) 3(a1+r:12)+2c1=ﬂ — 3(2—2.—:*1}—2{’]:6—4{’1:[} — c1=c2=5e5: a,+a, =-1
D+4) a,—-a,+2b=0 = a —a, =2b
7)-8) 3la,—a,)-4b, =0 = 3(2b,)-2b, =4b, =0 = b =b, =0.

1 =>al=a2=-1/2.
\S:

-

| —i.f}+ir._ ha x € [-1; 0]
S (x)=- :f % |
——:{3—:——.1[, ha x {1;1] :
L2 2 '
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7. Implementation of Spline

7.1 A programme for calculating spline

e polynom creation

oc(d1,d2,x1,x2,y1,y2)

17
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7. Implementation of Spline

- Procedure spline
> s:=proc(x::list(numeric),y::list(humeric))
local n,i,j,mat,res,sol,draw,h1,h2,pol:
ops(xX)<>nops(y) then ERROR(,,number of x and y most be equal’’) fi:

18
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7. Implementation of Spline

Testing the programme

1/4,1/2,3/4,1],[0,1/16,1/4,9/16,1]):
t(x"2,x=0..1,color=Dblue));

Imterpolation of =42 with my cuhic spline.
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7. Implementation of Spline

Testing the programme

1/100,1/25,1/16,1/4,16/25,1],[0,1/10,1/5,1/4,1/2,4/5,1]):
ot(sqrt(x),x=0..1,color=blue), view=[0..1,0..1]);

Interpolation of sqrt{z) with my enbie spline.
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8. Glossary

piecewise: a piecewise-defined function f(x) of a real variable x is a function whose
definition is given differently on disjoint intervals of its domain. A common example is
he absolute value function. <-Back

In mathematics a spline is a special function defined piecewise by polynomials.
2r science the term spline refers to a piecewise polynomial curve. <-BACK

pline constructed of piecewise third-order polynomials which pass

ol points. The second derivate of each polynomial is commonly
Ince this provides a boundary condition that completes the
produces a so-called “natural’” cubic spline and leads to a
n be solved easily to give the coefficients of the

21
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