
Sorting Algorithms LP&ZT 2005

Sorting Algorithms

Having to sort a list is an issue that comes up all the time when
you are writing programs.

Sorting algorithms are a standard topic in introductory courses in
Computer Science, not only because sorting itself is an important
issue, but also because it is particularly suited to demonstrating
that there can be several very different solutions (algorithms) to
the same problem, and that it can be useful and instructive to
compare these alternative approaches.

In this lecture, we are going to introduce a couple of different
sorting algorithms, discuss their implementation in Prolog, and
analyse their complexity.

Ulle Endriss (ulle@illc.uva.nl) 1

Sorting Algorithms LP&ZT 2005

Aim

We want to implement a predicate that will take an ordering
relation and an unsorted list and return a sorted list. Examples:

?- sort(<, [3,8,5,1,2,4,6,7], List).

List = [1, 2, 3, 4, 5, 6, 7, 8]

Yes

?- sort(>, [3,8,5,1,2,4,6,7], List).

List = [8, 7, 6, 5, 4, 3, 2, 1]

Yes

?- sort(is_bigger, [horse,elephant,donkey], List).

List = [elephant, horse, donkey]

Yes

Ulle Endriss (ulle@illc.uva.nl) 2

Sorting Algorithms LP&ZT 2005

Auxiliary Predicate to Check Orderings

We are going to use the following predicate to check whether two
given terms A and B are ordered with respect to the ordering
relation Rel supplied:

check(Rel, A, B) :-

Goal =.. [Rel,A,B],

call(Goal).

Remark: In SWI Prolog, you could also use just Goal instead of
call(Goal) in the last line of the program.

Here are two examples of check/3 in action:

?- check(is_bigger, elephant, monkey).

Yes

?- check(<, 7, 5).

No

Ulle Endriss (ulle@illc.uva.nl) 3

Sorting Algorithms LP&ZT 2005

Bubblesort

The first sorting algorithm we are going to look into is called
bubblesort—the way it operates is supposedly reminiscent of
bubbles floating up in a glass of spa rood.

This algorithm works as follows:

• Go through the list from left to right until you find a pair of
consecutive elements that are ordered the wrong way round.
Swap them.

• Repeat the above until you can go through the full list without
encountering such a pair. Then the list is sorted.

Try sorting the list [3, 7, 20, 16, 4, 46] this way . . .

Ulle Endriss (ulle@illc.uva.nl) 4

Sorting Algorithms LP&ZT 2005

Bubblesort in Prolog

This predicate calls swap/3 and then continues recursively. If
swap/3 fails, then the current list is sorted and can be returned:

bubblesort(Rel, List, SortedList) :-

swap(Rel, List, NewList), !,

bubblesort(Rel, NewList, SortedList).

bubblesort(_, SortedList, SortedList).

Go recursively through a list until you finds a pair A/B to swap and
return the new list, or fail if there is no such pair:

swap(Rel, [A,B|List], [B,A|List]) :-

check(Rel, B, A).

swap(Rel, [A|List], [A|NewList]) :-

swap(Rel, List, NewList).

Ulle Endriss (ulle@illc.uva.nl) 5

Sorting Algorithms LP&ZT 2005

Examples

Just to prove that it really works:

?- bubblesort(<, [5,3,7,5,2,8,4,3,6], List).

List = [2, 3, 3, 4, 5, 5, 6, 7, 8]

Yes

?- bubblesort(is_bigger, [donkey,horse,elephant], List).

List = [elephant, horse, donkey]

Yes

?- bubblesort(@<, [donkey,horse,elephant], List).

List = [donkey, elephant, horse]

Yes

Ulle Endriss (ulle@illc.uva.nl) 6

Sorting Algorithms LP&ZT 2005

An Improvement

The version of bubblesort we have given before can be improved
upon. For the version presented, we know that we are going to
have to do a lot of redundant comparisons:

Suppose we have just swapped elements 100 and 101.
Then in the next round, the earliest we are going to find an
unordered pair is after 99 comparisons (because the first 99
elements have already been sorted in previous rounds).

This problem can be avoided, by continuing to swap elements and
only to return to the front of the list once we have reached its end.

The Prolog implementation is just a little more complicated . . .

Ulle Endriss (ulle@illc.uva.nl) 7

Sorting Algorithms LP&ZT 2005

Improved Bubblesort in Prolog

bubblesort2(Rel, List, SortedList) :-

swap2(Rel, List, NewList), % this now always succeeds

List \= NewList, !, % check there’s been a swap

bubblesort2(Rel, NewList, SortedList).

bubblesort2(_, SortedList, SortedList).

swap2(Rel, [A,B|List], [B|NewList]) :-

check(Rel, B, A),

swap2(Rel, [A|List], NewList). % continue!

swap2(Rel, [A|List], [A|NewList]) :-

swap2(Rel, List, NewList).

swap2(_, [], []). % new base case: reached end of list

Ulle Endriss (ulle@illc.uva.nl) 8

Sorting Algorithms LP&ZT 2005

Complexity Analysis

Here we are only going to look into the time complexity (rather
than the space complexity) of sorting algorithms.

Throughout, let n be the length of the list to be sorted. This is the
obvious parameter by which to measure the problem size.

We are going to measure the complexity of an algorithm in terms of
the number of primitive comparison operations (i.e. calls to
check/3 in Prolog) required by that algorithm to sort a list of
length n. This is a reasonable approximation of actual runtimes.

As with search algorithms earlier on in the course, we are going to
be interested in what happens to the complexity of solving a
problem with a given algorithm when we increase the problem size.

Will it be exponential in n? Or linear? Or something in between?

Ulle Endriss (ulle@illc.uva.nl) 9

Sorting Algorithms LP&ZT 2005

Big-O Notation: Recap

Let f : N → N and g : N → N be two functions mapping natural
numbers to natural numbers.

Think of f as computing, for any problem size n, the worst-case
time complexity f(n). This may be a rather complicated function.

Think of g as a function that may be a “good approximation” of f

and that is more convenient when speaking about complexities.
The Big-O Notation is a way of making the idea of a suitable
approximation mathematically precise.

We say that f(n) is in O(g(n)) iff there exist an n0 ∈ N and a
c ∈ R+ such that f(n) ≤ c · g(n) for all n ≥ n0.

That is, from some n0 onwards, the difference between f and g will
be at most some constant factor c.

Ulle Endriss (ulle@illc.uva.nl) 10

Sorting Algorithms LP&ZT 2005

Examples

(1) Let f(n) = 5 · n2 + 20. Then f(n) is in O(n2).
Proof: Use c = 6 and n0 = 5.

(2) Let f(n) = n + 1000000. Then f(n) is in O(n).
Proof: Use c = 2 and n0 = 1000000 (or vice versa).

(3) Let f(n) = 5 · n2 + 20. Then f(n) is also in O(n3), but this is
not very interesting. We want complexity classes to be “sharp”.

(4) Let f(n) = 500 · n200 + n17 + 1000. Then f(n) is in O(2n).
Proof: Use c = 1 and n0 = 3000. In general, exponential
functions always grow much faster than any polynomial
function. So O(2n) is not at all a sharp complexity class for f .
A better choice would be O(n200).

Ulle Endriss (ulle@illc.uva.nl) 11

Sorting Algorithms LP&ZT 2005

Complexity of Bubblesort

How many comparisons does bubblesort perform in the worst case?
Suppose we are using the improved version of bubblesort . . .

In the worst case, the list is presented exactly the wrong way
round, as in the following example:

?- bubblesort2(<, [10,9,8,7,6,5,4,3,2,1], List).

The algorithm will first move 10 to the end of the list, then 9, etc.

In each round, we have to go through full list, i.e. make n−1
comparisons. And there are n rounds (one for each element to be
moved). Hence, we require n · (n−1) comparisons.

; Hence, the complexity of improved bubblesort is O(n2).

Home entertainment: The complexity of our original version of
bubblesort is actually O(n3). The exact number of comparisons
required is 1

12 · n · (n−1) · (2n+2) + (n−1) . . . try to prove it!

Ulle Endriss (ulle@illc.uva.nl) 12

Sorting Algorithms LP&ZT 2005

Quicksort

The next sorting algorithm we consider is called quicksort. It works
as follows (for a non-empty list):

• Select an arbitrary element X from the list.

• Split the remaining elements into a list Left containing all the
elements preceding X in the ordering relation, and a list Right
containing all the remaining elements.

• Sort Left and Right using quicksort (recursion), resulting in
SortedLeft and SortedRight, respectively.

• Return the result: SortedLeft ++ [X] ++ SortedRight.

How fast quicksort runs will depend on the choice of X. In Prolog,
we are simply going to select the head of the unsorted list.

Ulle Endriss (ulle@illc.uva.nl) 13

Sorting Algorithms LP&ZT 2005

Quicksort in Prolog

Sorting the empty list results in the empty list (base case):

quicksort(_, [], []).

For the recursive rule, we first remove the Head from the unsorted
list and split the Tail into those elements preceding Head wrt. the
ordering Rel (list Left) and the remaining elements (list Right).
Then Left and Right are being sorted, and finally everything is
put together to return the full sorted list:

quicksort(Rel, [Head|Tail], SortedList) :-

split(Rel, Head, Tail, Left, Right),

quicksort(Rel, Left, SortedLeft),

quicksort(Rel, Right, SortedRight),

append(SortedLeft, [Head|SortedRight], SortedList).

Ulle Endriss (ulle@illc.uva.nl) 14

Sorting Algorithms LP&ZT 2005

Splitting Lists

We still need to implement split/5. This predicate takes an
ordering relation, an element, and a list, and returns two lists: one
containing the elements from the input list preceding the input
element wrt. the input ordering relation, and one containing the
remaining elements from the input list (both unsorted).

split(_, _, [], [], []).

split(Rel, Middle, [Head|Tail], [Head|Left], Right) :-

check(Rel, Head, Middle), !,

split(Rel, Middle, Tail, Left, Right).

split(Rel, Middle, [Head|Tail], Left, [Head|Right]) :-

split(Rel, Middle, Tail, Left, Right).

Ulle Endriss (ulle@illc.uva.nl) 15

Sorting Algorithms LP&ZT 2005

Testing split/5

The following example demonstrates how split/5 works:

?- split(<, 20, [18,7,21,15,20,55,7,8,87], X, Y).

X = [18, 7, 15, 7, 8]

Y = [21, 20, 55, 87]

Yes

Ulle Endriss (ulle@illc.uva.nl) 16

Sorting Algorithms LP&ZT 2005

Quicksort Examples

A couple of examples demonstrating that quicksort works:

?- quicksort(>, [2,4,5,3,6,5,1], List).

List = [6, 5, 5, 4, 3, 2, 1]

Yes

?- quicksort(is_bigger, [elephant,donkey,horse], List).

List = [elephant, horse, donkey]

Yes

Ulle Endriss (ulle@illc.uva.nl) 17

Sorting Algorithms LP&ZT 2005

Complexity of Splitting

To analyse the complexity of quicksort, we first analyse the
complexity of splitting, a crucial sub-routine of the algorithm.

Given a list L and an element X, how many comparisons are
required to divide the elements in L into those that are to be placed
to the left and those that are to be placed to the right of X?

Let n be the length of [X|L]. Clearly, we require exactly n−1
comparison operations. Hence, the complexity of splitting in O(n).

Ulle Endriss (ulle@illc.uva.nl) 18

Sorting Algorithms LP&ZT 2005

Complexity of Quicksort

To find out what the complexity of quicksort is, we have to check
how often quicksort performs a splitting operation, and on lists of
how many elements it does so.

A run of quicksort can be visualised as a tree. The height of the
tree corresponds to the recursion depth; and the width of the tree
corresponds to the work done by the splitting sub-routine at each
recursion level . . .

This will crucially depend on what elements we select for splitting.
Splitting could be either more or less balanced or more or less
unbalanced . . .

Ulle Endriss (ulle@illc.uva.nl) 19

Sorting Algorithms LP&ZT 2005

Extremely Unbalanced Splitting

In the case of extremely unbalanced splitting (say, we always select
the smallest element and all other elements end up in the righthand
sublist), quicksort has got a complexity of O(n2).

n

︸ ︷︷ ︸
n

This situation occurs, for instance, if the input list is already sorted
and we always select the head of the list for splitting (as in our
Prolog implementation).

Ulle Endriss (ulle@illc.uva.nl) 20

Sorting Algorithms LP&ZT 2005

Balanced Splitting

For the case of balanced splitting (the number of elements ending
up to the left of the selected element is always roughly equal to the
number of elements ending up on the righthand side), the following
figure depicts the situation: 

?

︸ ︷︷ ︸
n

To find out about the complexity of quicksort in the case of (more
or less) balanced splitting, we need to know what the height of such
a tree is (with respect to n).

Ulle Endriss (ulle@illc.uva.nl) 21

Sorting Algorithms LP&ZT 2005

Height of a Binary Tree

• How high is a binary tree of width n?

• There is 1 root node. Each time we go down one level, the
number of nodes per level doubles. On the final level, there are
n nodes (= width of the tree).

• So, how many times do we have to multiply 1 by 2 to get n?

1 · 2 · 2 · · · · · 2︸ ︷︷ ︸
x

= n

2x = n

x = log2 n

• Remark: Logarithms with different bases just differ by a
constant factor (e.g. log2 n = 5 · log32 n). So, in particular,
when we use the Big-O Notation, the basis of logarithms does
not matter and we are simply going to write “log n”.

Ulle Endriss (ulle@illc.uva.nl) 22

Sorting Algorithms LP&ZT 2005

Complexity of Quicksort (cont.)

For balanced splitting, we end up with an overall complexity of
O(n log n) for quicksort.

In practice, we can usually assume that splitting will occur in more
or less balanced a fashion. This is why quicksort is usually regarded
as an O(n log n) algorithm, although we have seen that complexity
will be quadratic in the very worst case.

The assumption of balancedness is justified, for instance, when the
input list is randomly ordered. In general, of course, we cannot
make that assumption. In general, always selecting the head of the
input list for splitting may not be a good strategy. In some cases it
may be possible to devise a heuristic to decide which element to
select (not discussed here).

Ulle Endriss (ulle@illc.uva.nl) 23

Sorting Algorithms LP&ZT 2005

Summary: Sorting Algorithms

• Sorting a list is a fundamental algorithmic problem that comes
up again and again in Computer Science and AI.

• We have discussed three searching algorithms:
näıve bubblesort, improved bubblesort, and quicksort.

• The Prolog implementation of each of these take an ordering
relation and a list as input, and return the sorted list.

• The complexity of (improved) bubblesort is O(n2). Slow.

• The complexity of quicksort is O(n log n), at least under the
assumption of reasonably balanced splitting. Fast.

• There are many other sorting algorithms around. Two of them,
insert-sort and merge-sort are also explained in the textbook.

Ulle Endriss (ulle@illc.uva.nl) 24

