
Search Techniques LP&ZT 2005

Search Techniques for Artificial Intelligence

Search is a central topic in Artificial Intelligence. This part of the
course will show why search is such an important topic, present a
general approach to representing problems to do with search,
introduce several search algorithms, and demonstrate how to
implement these algorithms in Prolog.

• Motivation: Applications and Toy Examples

• The State-Space Representation

• Uninformed Search Techniques:

– Depth-first Search (several variations)

– Breadth-first Search

– Iterative Deepening

• Best-first Search with the A* Algorithm

Ulle Endriss (ulle@illc.uva.nl) 1

Search Techniques LP&ZT 2005

Route Planning

Ulle Endriss (ulle@illc.uva.nl) 2

Search Techniques LP&ZT 2005

Robot Navigation

Source: http://www.ics.forth.gr/cvrl/

Ulle Endriss (ulle@illc.uva.nl) 3

http://www.ics.forth.gr/cvrl/

Search Techniques LP&ZT 2005

Planning in the Blocks World

How can we get from the situation depicted on the left to the
situation shown on the right?

Ulle Endriss (ulle@illc.uva.nl) 4

Search Techniques LP&ZT 2005

Eight-Queens Problem

Arrange eight queens on a chess board in such a manner that none
of them can attack any of the others!

Source: Russell & Norvig, Artificial Intelligence

The above is almost a solution, but not quite . . .

Ulle Endriss (ulle@illc.uva.nl) 5

Search Techniques LP&ZT 2005

Eight-Puzzle

Yet another puzzle . . .

Source: Russell & Norvig, Artificial Intelligence

Ulle Endriss (ulle@illc.uva.nl) 6

Search Techniques LP&ZT 2005

Search and Optimisation Problems

All these problems have got a common structure:

• We are faced with an initial situation and we would like to
achieve a certain goal.

• At any point in time we have different simple actions available
to us (e.g. “turn left” vs. “turn right”). Executing a particular
sequence of such actions may or may not achieve the goal.

• Search is the process of inspecting several such sequences and
choosing one that achieves the goal.

• For some applications, each sequence of actions may be
associated with a certain cost. A search problem where we aim
not only at reaching our goal but also at doing so at minimal
cost is an optimisation problem.

Ulle Endriss (ulle@illc.uva.nl) 7

Search Techniques LP&ZT 2005

The State-Space Representation

• State space: What are the possible states? Examples:

– Route planning: position on the map

– Blocks World: configuration of blocks

A concrete problem must also specify the initial state.

• Moves: What are legal moves between states? Examples:

– Turning 45◦ to the right could be a legal move for a robot.

– Putting block A on top of block B is not a legal move if
block C is currently on top of A.

• Goal state: When have we found a solution? Example:

– Route planning: position = “Plantage Muidergracht 24”

• Cost function: How costly is a given move? Example:

– Route planning: The cost of moving from position X to
position Y could be the distance between the two.

Ulle Endriss (ulle@illc.uva.nl) 8

Search Techniques LP&ZT 2005

Prolog Representation

For now, we are going to ignore the cost of moving from one node
to the next; that is, we are going to deal with pure search problems.

A problem specification has to include the following:

• The representation of states/nodes is problem-specific. In the
simplest case, a state will simply be represented by its name
(e.g. a Prolog atom).

• move(+State,-NextState).

Given the current State, instantiate the variable NextState

with a possible follow-up state (and all possible follow-up states
through backtracking).

• goal(+State).

Succeed if State represents a goal state.

Ulle Endriss (ulle@illc.uva.nl) 9

Search Techniques LP&ZT 2005

Example: Representing the Blocks World

• State representation: We use a list of three lists with the atoms
a, b, and c somewhere in these lists. Each sublist represents a
stack. The first element in a sublist is the top block. The order
of the sublists in the main list does not matter. Example:

[[c,a], [b], []]

• Possible moves: You can move the top block of any stack onto
any other stack:

move(Stacks, NewStacks) :-

select([Top|Stack1], Stacks, Rest),

select(Stack2, Rest, OtherStacks),

NewStacks = [Stack1,[Top|Stack2]|OtherStacks].

• Goal state: We assume our goal is always to get a stack with a

on top of b on top of c (other goals are, of course, possible):

goal(Stacks) :- member([a,b,c], Stacks).

Ulle Endriss (ulle@illc.uva.nl) 10

Search Techniques LP&ZT 2005

Searching the State Space

The set of all possible sequences of legal moves form a tree:

• The nodes of the tree are labelled with states (the same state
could label many different nodes).

• The initial state is the root of the tree.

• For each of the legal follow-up moves of a given state, any node
labelled with that state will have a child labelled with the
follow-up state.

• Each branch corresponds to a sequence of states (and thereby
also a sequence of moves).

There are, at least, two ways of moving through such a tree:
depth-first and breadth-first search . . .

Ulle Endriss (ulle@illc.uva.nl) 11

Search Techniques LP&ZT 2005

Depth-first Search

In depth-first search, we start with the root node and completely
explore the descendants of a node before exploring its siblings (and
siblings are explored in a left-to-right fashion).

Depth-first traversal: A → B → D → E → C → F → G

Implementing depth-first search in Prolog is very easy, because
Prolog itself uses depth-first search during backtracking.

Ulle Endriss (ulle@illc.uva.nl) 12

Search Techniques LP&ZT 2005

Depth-first Search in Prolog

We are going to define a “user interface” like the following for each
of our search algorithms:

solve_depthfirst(Node, [Node|Path]) :-

depthfirst(Node, Path).

Next the actual algorithm: Stop if the current Node is a goal state;
otherwise move to the NextNode and continue to search. Collect
the nodes that have been visited in Path.

depthfirst(Node, []) :-

goal(Node).

depthfirst(Node, [NextNode|Path]) :-

move(Node, NextNode),

depthfirst(NextNode, Path).

Ulle Endriss (ulle@illc.uva.nl) 13

Search Techniques LP&ZT 2005

Testing: Blocks World

It’s working pretty well for some problem instances . . .

?- solve_depthfirst([[c,b,a],[],[]], Plan).

Plan = [[[c,b,a], [], []],

[[b,a], [c], []],

[[a], [b,c], []],

[[], [a,b,c], []]]

Yes

. . . but not for others . . .

?- solve_depthfirst([[c,a],[b],[]], Plan).

ERROR: Out of local stack

Ulle Endriss (ulle@illc.uva.nl) 14

Search Techniques LP&ZT 2005

Explanation

Debugging reveals that we are stuck in a loop:

?- spy(depthfirst).

[debug] ?- solve_depthfirst([[c,a],[b],[]], Plan).

Call: (9) depthfirst([[c, a], [b], []], _G403) ? leap

Redo: (9) depthfirst([[c, a], [b], []], _G403) ? leap

Call: (10) depthfirst([[a], [c, b], []], _G406) ? leap

Redo: (10) depthfirst([[a], [c, b], []], _G406) ? leap

Call: (11) depthfirst([[], [a, c, b], []], _G421) ? leap

Redo: (11) depthfirst([[], [a, c, b], []], _G421) ? leap

Call: (12) depthfirst([[c, b], [a], []], _G436) ? leap

Redo: (12) depthfirst([[c, b], [a], []], _G436) ? leap

Call: (13) depthfirst([[b], [c, a], []], _G454) ? leap

Redo: (13) depthfirst([[b], [c, a], []], _G454) ? leap

Call: (14) depthfirst([[], [b, c, a], []], _G469) ? leap

Redo: (14) depthfirst([[], [b, c, a], []], _G469) ? leap

Call: (15) depthfirst([[c, a], [b], []], _G484) ?

Ulle Endriss (ulle@illc.uva.nl) 15

Search Techniques LP&ZT 2005

Cycle Detection

The solution is simple: we need to disallow any moves that would
result in a loop. That is, if the next state is already present in the
set of nodes visited so far, choose another follow-up state instead.

From now on we are going to use the following “wrapper” around
the move/2 predicate defined by the application:

move_cyclefree(Visited, Node, NextNode) :-

move(Node, NextNode),

\+ member(NextNode, Visited).

Here, the first argument should be instantiated with the list of
nodes visited already.

But note that we cannot just replace move/2 by move_cyclefree/3

in depthfirst/2, because Visited is not available where needed.

Ulle Endriss (ulle@illc.uva.nl) 16

Search Techniques LP&ZT 2005

Cycle-free Depth-first Search in Prolog

Now the nodes will be collected as we go along, so we have to
reverse the list of nodes in the end:

solve_depthfirst_cyclefree(Node, Path) :-

depthfirst_cyclefree([Node], Node, RevPath),

reverse(RevPath, Path).

The first argument is an accumulator collecting the nodes visited so
far; the second argument is the current node; and the third
argument will be instantiated with the solution path (which equals
the accumulator once we’ve hit a goal node):

depthfirst_cyclefree(Visited, Node, Visited) :-

goal(Node).

depthfirst_cyclefree(Visited, Node, Path) :-

move_cyclefree(Visited, Node, NextNode),

depthfirst_cyclefree([NextNode|Visited], NextNode, Path).

Ulle Endriss (ulle@illc.uva.nl) 17

Search Techniques LP&ZT 2005

Repetitions and Loops

• Note that our “cycle-free” algorithm does not necessarily avoid
repetitions. It only avoids repetitions on the same branch, but
if the the same state occurs on two different branches, then
both nodes will be visited.

• As long as branching is finite, this still avoids looping.

• For problems with a high branching factor and a relatively
small number of possible distinct states, it may be worthwhile
to design an algorithm that can also detect repetitions across
branches.

Ulle Endriss (ulle@illc.uva.nl) 18

Search Techniques LP&ZT 2005

Testing Again

With our new cycle-free algorithm, we get an answer to the query
that did cause an infinite loop earlier:

?- solve_depthfirst_cyclefree([[c,a],[b],[]], Plan).

Plan = [[[c,a],[b],[]], [[a],[c,b],[]], [[],[a,c,b],[]],

[[c,b],[a],[]], [[b],[c,a],[]], [[],[b],[c,a]],

[[a],[c],[b]], [[],[a,c],[b]], [[c],[a],[b]],

[[],[c,b],[a]], [[b],[c],[a]], [[],[b,c],[a]],

[[c],[b],[a]], [[],[b,a], [c]], [[a],[b,c],[]],

[[],[a,b,c],[]]]

Yes

But there must be a better solution than a path with 16 nodes!

Ulle Endriss (ulle@illc.uva.nl) 19

Search Techniques LP&ZT 2005

Restricting Search to Short Paths

• A possible solution to our problem of getting an unnecessarily
long solution path is to restrict search to paths of “acceptable”
length.

• The idea is to stop expanding the current branch once it has
reached a certain maximal depth (the bound) and to move on
to the next branch.

• Of course, like this we may miss some solutions further down
the current path. On the other hand, we increase chances of
finding a short solution on another branch within a reasonable
amount of time.

Ulle Endriss (ulle@illc.uva.nl) 20

Search Techniques LP&ZT 2005

Depth-bounded Depth-first Search in Prolog

The program is basically the same as for cycle-free depth-first
search. We have one additional argument, the Bound, to be
specified by the user.

solve_depthfirst_bound(Bound, Node, Path) :-

depthfirst_bound(Bound, [Node], Node, RevPath),

reverse(RevPath, Path).

depthfirst_bound(_, Visited, Node, Visited) :-

goal(Node).

depthfirst_bound(Bound, Visited, Node, Path) :-

Bound > 0,

move_cyclefree(Visited, Node, NextNode),

NewBound is Bound - 1,

depthfirst_bound(NewBound, [NextNode|Visited], NextNode, Path).

Ulle Endriss (ulle@illc.uva.nl) 21

Search Techniques LP&ZT 2005

Testing Again

Now we can generate a short plan for our Blocks World problem, at
least if we can guess a suitable value for the bound required as
input to the depth-bounded depth-first search algorithm:

?- solve_depthfirst_bound(2, [[c,a],[b],[]], Plan).

No

?- solve_depthfirst_bound(3, [[c,a],[b],[]], Plan).

Plan = [[[c,a], [b], []],

[[a], [c], [b]],

[[], [b, c], [a]],

[[], [a, b, c], []]]

Yes

Ulle Endriss (ulle@illc.uva.nl) 22

Search Techniques LP&ZT 2005

Complexity Analysis

• It is important to understand the complexity of an algorithm.

– Time complexity: How much time will it take to compute a
solution to the problem?

– Space complexity: How much memory do we need to do so?

• We may be interested in both a worst-case and an average-case
complexity analysis.

– Worst-case analysis: How much time/memory will the
algorithm require in the worst case?

– Average-case analysis: How much time/memory will the
algorithm require on average?

• It is typically extremely difficult to give a formal average-case
analysis that is theoretically sound. Experimental studies using
real-world data are often the only way.
; Here we are only going to attempt a worst-case analysis.

Ulle Endriss (ulle@illc.uva.nl) 23

Search Techniques LP&ZT 2005

Time Complexity of Depth-first Search

• As there can be infinite loops, in the worst case, the simple
depth-first algorithm will never stop. So we are going to
analyse depth-bounded depth-first search instead.

• Let dmax be the maximal depth allowed. (If we happen to know
that no branch in the tree can be longer than dmax , then our
analysis will also apply to the other two depth-first algorithms.)

• For simplicity, assume that for every possible state there are
exactly b possible follow-up states. That is, b is the branching
factor of the search tree.

Ulle Endriss (ulle@illc.uva.nl) 24

Search Techniques LP&ZT 2005

Time Complexity of Depth-first Search (cont.)

• What is the worst case?

In the worst case, every branch has length dmax (or more) and
the only node labelled with a goal state is the last node on the
rightmost branch. Hence, depth-first search will visit all the
nodes in the tree (up to depth dmax) before finding a solution.

• So how many nodes are there in a tree of height dmax with
branching factor b?

⇒ 1 + b + b2 + b3 + · · ·+ bdmax

Example: b = 2 and dmax = 2

1+21+22 = 22+1−1 = 7

Ulle Endriss (ulle@illc.uva.nl) 25

Search Techniques LP&ZT 2005

Big-O Notation

When analysing the complexity of algorithms, small constants and
the like don’t matter very much. What we are really interested is
the order of magnitude with which the complexity of the algorithm
increases as we increase the size of the input.

Let n be the problem size and let f(n) be the precise complexity.

We say that f(n) is in O(g(n)) iff there exist an n0 ∈ N and a
c ∈ R+ such that f(n) ≤ c · g(n) for all n ≥ n0.

Example: The worst-case time complexity of depth-bounded
depth-first search is in O(bdmax). We also say that the complexity of
this algorithm is exponential in dmax .

Ulle Endriss (ulle@illc.uva.nl) 26

Search Techniques LP&ZT 2005

Exponential Complexity

In general, in Computer Science, anything exponential is considered
bad news. Indeed, our simple search techniques will usually not
work very well (or at all) for larger problem instances.

Suppose the branching factor is b = 4 and suppose it takes us
1 millisecond to check one node. What kind of depth bound would
be feasible to use in depth-first search?

Depth Nodes Time

2 21 0.021 seconds

5 1365 1.365 seconds

10 1398101 23.3 minutes

15 1431655765 16.6 days

20 1466015503701 46.5 years

Ulle Endriss (ulle@illc.uva.nl) 27

Search Techniques LP&ZT 2005

Space Complexity of Depth-first Search

The good news is that depth-first search is very efficient in view of
its memory requirements:

• At any point in time, we only need to keep the path from the
root to the current node in memory, and —depending on the
exact implementation— possibly also all the sibling nodes for
each of the nodes in that path.

• The length of the path is at most dmax+1 and each of the nodes
on the path will have at most b−1 siblings left to consider.

• Hence, the worst-case space complexity is O(b · dmax).
That is, the complexity is linear in dmax .

In fact, because Prolog uses backtracking, sibling nodes do not
need to be kept in memory explicitly. Therefore, space complexity
even reduces to O(dmax).

Ulle Endriss (ulle@illc.uva.nl) 28

Search Techniques LP&ZT 2005

Breadth-first Search

The problem with (unbounded) depth-first search is that we may
get lost in an infinite branch, while there could be another short
branch leading to a solution.

The problem with depth-bounded depth-first search is that it can
be difficult to correctly estimate a good value for the bound.

Such problems can be overcome by using breadth-first search, where
we explore (right-hand) siblings before children.

Breadth-first traversal: A → B → C → D → E → F → G

Ulle Endriss (ulle@illc.uva.nl) 29

Search Techniques LP&ZT 2005

Breadth-first Search: Implementation Difficulties

How do we keep track of which nodes we have already visited and
how do we identify the next node to go to?

Recall that for depth-first search, in theory, we had to keep the
current branch in memory, together with all the sibling nodes of
the nodes on that branch.

Because of the way backtracking works, in Prolog we actually only
had to keep track of the current node (Prolog keeps the
corresponding path on its internal recursion stack).

For breadth-first search, we are going to have to take care of the
memory management by ourselves.

Ulle Endriss (ulle@illc.uva.nl) 30

Search Techniques LP&ZT 2005

Breadth-first Search: Implementation Idea

The algorithm will maintain a list of the currently active paths.

Each round of the algorithm running consists of three steps:

(1) Remove the first path from the list of paths.

(2) Generate a new path for every possible follow-up state of the
state labelling the last node in the selected path.

(3) Append the list of newly generated paths to the end of the list
of paths (to ensure paths are really being visited in
breadth-first order).

Ulle Endriss (ulle@illc.uva.nl) 31

Search Techniques LP&ZT 2005

Breadth-first Search in Prolog

The usual “user interface” takes care of initialising the list of active
paths and of reversing the solution path in the end:

solve_breadthfirst(Node, Path) :-

breadthfirst([[Node]], RevPath),

reverse(RevPath, Path).

And here is the actual algorithm:

breadthfirst([[Node|Path]|_], [Node|Path]) :-

goal(Node).

breadthfirst([Path|Paths], SolutionPath) :-

expand_breadthfirst(Path, ExpPaths),

append(Paths, ExpPaths, NewPaths),

breadthfirst(NewPaths, SolutionPath).

Ulle Endriss (ulle@illc.uva.nl) 32

Search Techniques LP&ZT 2005

Expanding Branches

We still need to implement expand_breadthfirst/2 . . .

Given a Path (represented in reverse order), the predicate should
generate the list of expanded paths we get by making a single move
from the last Node in the input path.

expand_breadthfirst([Node|Path], ExpPaths) :-

findall([NewNode,Node|Path],

move_cyclefree(Path,Node,NewNode),

ExpPaths).

Ulle Endriss (ulle@illc.uva.nl) 33

Search Techniques LP&ZT 2005

Example

We are now able to find the shortest possible plan for our Blocks
World scenario, without having to guess a suitable bound first:

?- solve_breadthfirst([[c,a],[b],[]], Plan).

Plan = [[[c,a], [b], []],

[[a], [c], [b]],

[[], [b,c], [a]],

[[], [a,b,c], []]]

Yes

Ulle Endriss (ulle@illc.uva.nl) 34

Search Techniques LP&ZT 2005

Completeness and Optimality

Some good news about breadth-first search:

• Breadth-first search guarantees completeness: if there exists a
solution it will be found eventually.

• Breadth-first search also guarantees optimality: the first
solution returned will be as short as possible.

(Remark: This interpretation of optimality assumes that every
move has got a cost of 1. With real cost functions it does
become a little more involved.)

Recall that depth-first search does not ensure either completeness
or optimality.

Ulle Endriss (ulle@illc.uva.nl) 35

Search Techniques LP&ZT 2005

Complexity Analysis of Breadth-first Search

Time complexity: In the worst case, we have to search through the
entire tree for any search algorithm. As both depth-first and
breadth-first search visit each node exactly once, time complexity
will be the same.

Let d be the the depth of the first solution and let b be the
branching factor (again, assumed to be constant for simplicity).
Then worst-case time complexity is O(bd).

Space complexity: Big difference; now we have to store every path
visited before, while for depth-first we only had to keep a single
branch in memory. Hence, space complexity is also O(bd).

So there is a trade-off between memory-requirements on the one
hand and completeness/optimality considerations on the other.

Ulle Endriss (ulle@illc.uva.nl) 36

Search Techniques LP&ZT 2005

Best of Both Worlds

We would like an algorithm that, like breadth-first search, is
guaranteed (1) to visit every node on the tree eventually and (2) to
return the shortest possible solution, but with (3) the favourable
memory requirements of a depth-first algorithm.

Observation: Depth-bounded depth-first search almost fits the bill.
The only problem is that we may choose the bound either

• too low (losing completeness by stopping early) or

• too high (becoming too similar to normal depth-first with the
danger of getting lost in a single deep branch).

Idea: Run depth-bounded depth-first search again and again, with
increasing values for the bound!

This approach is called iterative deepening . . .

Ulle Endriss (ulle@illc.uva.nl) 37

Search Techniques LP&ZT 2005

Iterative Deepening

We can specify the iterative deepening algorithm as follows:

(1) Set n to 0.

(2) Run depth-bounded depth-first search with bound n.

(3) Stop and return answer in case of success;
increment n by 1 and go back to (2) otherwise.

However, in Prolog we can implement the same algorithm also in a
more compact manner . . .

Ulle Endriss (ulle@illc.uva.nl) 38

Search Techniques LP&ZT 2005

Finding a Path from A to B

A central idea in our implementation of iterative deepening in
Prolog will be to provide a predicate that can compute a path of
moves from a given start node to some end node.

path(Node, Node, [Node]).

path(FirstNode, LastNode, [LastNode|Path]) :-

path(FirstNode, PenultimateNode, Path),

move_cyclefree(Path, PenultimateNode, LastNode).

Ulle Endriss (ulle@illc.uva.nl) 39

Search Techniques LP&ZT 2005

Iterative Deepening in Prolog

The implementation of iterative deepening now becomes
surprisingly easy. We can rely on the fact that Prolog will
enumerate candidate paths, of increasing length, from the initial
node to a goal node.

solve_iterative_deepening(Node, Path) :-

path(Node, GoalNode, RevPath),

goal(GoalNode),

reverse(RevPath, Path).

Ulle Endriss (ulle@illc.uva.nl) 40

Search Techniques LP&ZT 2005

Example

And it really works:

?- solve_iterative_deepening([[a,c,b],[],[]], Plan).

Plan = [[[a,c,b], [], []],

[[c,b], [a], []],

[[b], [c], [a]],

[[], [b,c], [a]],

[[], [a,b,c], []]]

Yes

Note: Iterative deepening will go into an infinite loop when there
are no more answers (even when the search tree is finite). A more
sophisticated implementation could avoid this problem.

Ulle Endriss (ulle@illc.uva.nl) 41

Search Techniques LP&ZT 2005

Complexity Analysis of Iterative Deepening

Space complexity: As for depth-first search, at any moment in time
we only keep a single path in memory ; O(d).

Time complexity: This seems worse than for the other algorithms,
because the same nodes will get generated again and again.

However, time complexity is of the same order of magnitude as
before. If we add the complexities for depth-bounded depth-first
search for maximal depths 0, 1, . . . , d (somewhat abusing notation),
we still end up with O(bd):

O(b0) + O(b1) + O(b2) + · · ·+ O(bd) = O(bd)

In practice, memory issues are often the greater problem, and
iterative deepening is typically the best of the (uninformed) search
algorithms we have considered so far.

Ulle Endriss (ulle@illc.uva.nl) 42

Search Techniques LP&ZT 2005

Summary: Uninformed Search

We have introduced the following general-purpose algorithms:

• Depth-first search:

– Simple version: solve_depthfirst/2

– Cycle-free version: solve_depthfirst_cyclefree/2

– Depth-bounded version: solve_depthfirst_bound/3

• Breadth-first search: solve_breadthfirst/2

• Iterative deepening: solve_iterative_deepening/2

These algorithms (and their implementations, as given on these
slides) are applicable to any problem that can be formalised using
the state-space approach. The Blocks World has just been an
example!

Next we are going to see how to formalise a second (very different)
problem domain.

Ulle Endriss (ulle@illc.uva.nl) 43

Search Techniques LP&ZT 2005

Recall the Eight-Queens Problem

Arrange eight queens on a chess board in such a manner that none
of them can attack any of the others!

Source: Russell & Norvig, Artificial Intelligence

The above is almost a solution, but not quite . . .

Ulle Endriss (ulle@illc.uva.nl) 44

Search Techniques LP&ZT 2005

Representing the Eight-Queens Problem

Imagine you are trying to solve the problem by going through the
columns one by one (we’ll do it right-to-left), placing a queen in an
appropriate row for each column.

• States: States are partial solutions, with a queen placed in
columns n to 8, but not 1 to n−1. We represent them as lists
of pairs. Example:

[4/2, 5/7, 6/5, 7/3, 8/1]

The initial state is the empty list: []

• Moves: A move amounts to adding a queen in the rightmost
empty column. Moves are only legal if the new queen does not
attack any of the queens already present on the board.

• Goal state: The goal has been achieved as soon as there are
8 queens on the board. By construction, none of the queens
will attack any of the others.

Ulle Endriss (ulle@illc.uva.nl) 45

Search Techniques LP&ZT 2005

Specifying the Attack-Relation

The predicate noattack/2 succeeds if the queen given in the first
argument position does not attack any of the queens in the list
given as the second argument.

noattack(_, []).

noattack(X/Y, [X1/Y1|Queens]) :-

X =\= X1, % not in same column

Y =\= Y1, % not in same row

Y1-Y =\= X1-X, % not on ascending diagonal

Y1-Y =\= X-X1, % not on descending diagonal

noattack(X/Y, Queens).

Examples:

?- noattack(3/4, [1/8,2/6]). ?- noattack(2/7, [1/8]).

Yes No

Ulle Endriss (ulle@illc.uva.nl) 46

Search Techniques LP&ZT 2005

Representing the Eight-Queens Problem (cont.)

We are now in a position to define move/2 and goal/1 for the
eight-queens problem:

• Moves. Making a move means adding one more queen X/Y,
where X is the next column and Y could be anything, such that
the new queen does not attack any of the old ones:

move(Queens, [X/Y|Queens]) :-

length(Queens, Length),

X is 8 - Length,

member(Y, [1,2,3,4,5,6,7,8]),

noattack(X/Y, Queens).

• Goal state. We have achieved our goal once we have placed
8 queens on the board:

goal(Queens) :- length(Queens, 8).

Ulle Endriss (ulle@illc.uva.nl) 47

Search Techniques LP&ZT 2005

Solution

What is special about the eight-queens problem (or rather our
formalisation thereof) is that there are no cycles or infinite branches
in the search tree. Therefore, all of our search algorithms will work.

Here’s the (first) solution found by the basic depth-first algorithm:

?- solve_depthfirst([], Path), last(Path, Solution).

Path = [[], [8/1], [7/5, 8/1], [6/8, 7/5, 8/1], ...]

Solution = [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/1]

Yes

Note that here we are not actually interested in the path to the
final state, but only the final state itself (hence the use of last/2).

Ulle Endriss (ulle@illc.uva.nl) 48

Search Techniques LP&ZT 2005

Heuristic-guided Search

• Our complexity analysis of the various basic search algorithms
has shown that they are unlikely to produce results for slightly
more complex problems than we have considered here.

• In general, there is no way around this problem. In practice,
however, good heuristics that tell us which part of the search
tree to explore next, can often help to find solutions also for
larger problem instances.

• In this final chapter on search techniques for AI, we are going
to discuss one such heuristic, which leads to the well-known
A* algorithm.

Ulle Endriss (ulle@illc.uva.nl) 49

Search Techniques LP&ZT 2005

Optimisation Problems

• From now on, we are going to consider optimisation problems
(rather than simple search problems as before). Now every
move is associated with a cost and we are interested in a
solution path that minimises the overall cost.

• We are going to use a predicate move/3 instead of move/2. The
third argument is used to return the cost of an individual move.

Ulle Endriss (ulle@illc.uva.nl) 50

Search Techniques LP&ZT 2005

Best-first Search and Heuristic Functions

• For both depth-first and breadth-first search, which node in the
search tree will be considered next only depends on the
structure of the tree.

• The rationale in best-first search is to expand those paths next
that seem the most “promising”. Making this vague idea of
what may be promising precise means defining heuristics.

• We fix heuristics by means of a heuristic function h that is used
to estimate the “distance” of the current node n to a goal node:

h(n) = estimated cost from node n to a goal node

Of course, the definition of h is highly application-dependent.
In the route-planning domain, for instance, we could use the
straight-line distance to the goal location. For the eight-puzzle,
we might use the number of misplaced tiles.

Ulle Endriss (ulle@illc.uva.nl) 51

Search Techniques LP&ZT 2005

Best-first Search Algorithms

There are of course many different ways of defining a heuristic
function h. But there are also different ways of using h to decide
which path to expand next; which gives rise to different best-first
search algorithms.

One option is greedy best-first search:

• expand a path with an end node n such that h(n) is minimal

Breadth-first and depth-first search may also be seen as special
cases of best-first search (which do not use h at all):

• Breadth-first: expand the (leftmost of the) shortest path(s)

• Depth-first: expand the (leftmost of the) longest path(s)

Ulle Endriss (ulle@illc.uva.nl) 52

Search Techniques LP&ZT 2005

Example: Greedy Best-first Search

Greedy best-first search means always trying to continue with the
node that seems closest to the goal. This will work sometimes, but
not all of the time:

Clearly, greedy best-first search is not optimal. Like depth-first
search, it is also not complete.

Ulle Endriss (ulle@illc.uva.nl) 53

Search Techniques LP&ZT 2005

The A* Algorithm

The central idea in the so-called A* algorithm is to guide best-first
search both by

• the estimate to the goal as given by the heuristic function h and

• the cost of the path developed so far.

Let n be a node, g(n) the cost of moving from the initial node to n

along the current path, and h(n) the estimated cost of reaching a
goal node from n. Define f(n) as follows:

f(n) = g(n) + h(n)

This is the estimated cost of the cheapest path through n leading
from the initial node to a goal node. A* is the best-first search
algorithm that always expands a node n such that f(n) is minimal.

Ulle Endriss (ulle@illc.uva.nl) 54

Search Techniques LP&ZT 2005

A* in Prolog

On the following slides, we give an implementation of A* in Prolog.
Users of this algorithm will have to implement the following
application-dependent predicates themselves:

• move(+State,-NextState,-Cost).

Given the current State, instantiate the variable NextState

with a possible follow-up state and the variable Cost with the
associated cost (all possible follow-up states should get
generated through backtracking).

• goal(+State).

Succeed if State represents a goal state.

• estimate(+State,-Estimate).

Given a State, instantiate the variable Estimate with an
estimate of the cost of reaching a goal state. This predicate
implements the heuristic function.

Ulle Endriss (ulle@illc.uva.nl) 55

Search Techniques LP&ZT 2005

A* in Prolog: User Interface

Now we are not only going to maintain a list of paths (as in
breadth-first search, for instance), but a list of (reversed) paths
labelled with the current cost g(n) and the current estimate h(n):

General form: Path/Cost/Estimate
Example: [c,b,a,s]/6/4

Our usual “user interface” initialises the list of labelled paths with
the path consisting of just the initial node, labelled with cost 0 and
the appropriate estimate:

solve_astar(Node, Path/Cost) :-

estimate(Node, Estimate),

astar([[Node]/0/Estimate], RevPath/Cost/_),

reverse(RevPath, Path).

That is, for the final output, we are not interested in the estimate
anymore, but we do report the cost of solution paths.

Ulle Endriss (ulle@illc.uva.nl) 56

Search Techniques LP&ZT 2005

A* in Prolog: Moves

The following predicate serves as a “wrapper” around the move/3
predicate supplied by the application developer:

move_astar([Node|Path]/Cost/_, [NextNode,Node|Path]/NewCost/Est) :-

move(Node, NextNode, StepCost),

\+ member(NextNode, Path),

NewCost is Cost + StepCost,

estimate(NextNode, Est).

After calling move/3 itself, the predicate (1) checks for cycles,
(2) updates the cost of the current path, and (3) labels the new
path with the estimate for the new node.

The predicate move_astar/2 will be used to generate all
expansions of a given path by a single state:

expand_astar(Path, ExpPaths) :-

findall(NewPath, move_astar(Path,NewPath), ExpPaths).

Ulle Endriss (ulle@illc.uva.nl) 57

Search Techniques LP&ZT 2005

A* in Prolog: Getting the Best Path

The following predicate implements the search strategy of A*: from
a list of labelled paths, we select one that minimises the sum of the
current cost and the current estimate.

get_best([Path], Path) :- !.

get_best([Path1/Cost1/Est1,_/Cost2/Est2|Paths], BestPath) :-

Cost1 + Est1 =< Cost2 + Est2, !,

get_best([Path1/Cost1/Est1|Paths], BestPath).

get_best([_|Paths], BestPath) :-

get_best(Paths, BestPath).

Remark: Implementing a different best-first search algorithm only
involves changing get_best/2; the rest can stay the same.

Ulle Endriss (ulle@illc.uva.nl) 58

Search Techniques LP&ZT 2005

A* in Prolog: Main Algorithm

Stop in case the best path ends in a goal node:

astar(Paths, Path) :-

get_best(Paths, Path),

Path = [Node|_]/_/_,

goal(Node).

Otherwise, extract the best path, generate all its expansions, and
continue with the union of the remaining and the expanded paths:

astar(Paths, SolutionPath) :-

get_best(Paths, BestPath),

select(BestPath, Paths, OtherPaths),

expand_astar(BestPath, ExpPaths),

append(OtherPaths, ExpPaths, NewPaths),

astar(NewPaths, SolutionPath).

Ulle Endriss (ulle@illc.uva.nl) 59

Search Techniques LP&ZT 2005

Example

The following data corresponds to the example on page 263 in the
textbook (Figure 12.2):

move(s, a, 2). estimate(a, 5).

move(a, b, 2). estimate(b, 4).

move(b, c, 2). estimate(c, 4).

move(c, d, 3). estimate(d, 3).

move(d, t, 3). estimate(e, 7).

move(s, e, 2). estimate(f, 4).

move(e, f, 5). estimate(g, 2).

move(f, g, 2).

move(g, t, 2). estimate(s, 1000).

goal(t). estimate(t, 0).

Ulle Endriss (ulle@illc.uva.nl) 60

Search Techniques LP&ZT 2005

Example (cont.)

If we run A* on this problem specification, we first obtain the
optimal solution path and then one more alternative path:

?- solve_astar(s, Path).

Path = [s, e, f, g, t]/11 ;

Path = [s, a, b, c, d, t]/12 ;

No

Ulle Endriss (ulle@illc.uva.nl) 61

Search Techniques LP&ZT 2005

Debugging

We can use debugging to reconstruct the working of A* for this
example (trace edited for readability):

?- spy(expand_astar).

Yes

[debug] ?- solve_astar(s, Path).

Call: (10) expand_astar([s]/0/1000, _L233) ? leap

Call: (11) expand_astar([a, s]/2/5, _L266) ? leap

Call: (12) expand_astar([b, a, s]/4/4, _L299) ? leap

Call: (13) expand_astar([e, s]/2/7, _L353) ? leap

Call: (14) expand_astar([c, b, a, s]/6/4, _L386) ? leap

Call: (15) expand_astar([f, e, s]/7/4, _L419) ? leap

Call: (16) expand_astar([g, f, e, s]/9/2, _L452) ? leap

Path = [s, e, f, g, t]/11

Yes

Ulle Endriss (ulle@illc.uva.nl) 62

Search Techniques LP&ZT 2005

Excursus: Using Basic Search Algorithms

To test our basic (uninformed) search algorithms with this data, we
can introduce the following rule to map problem descriptions
involving a cost function to simple problem descriptions:

move(Node, NextNode) :- move(Node, NextNode, _).

We can now use, say, depth-first search as well:

?- solve_depthfirst(s, Path).

Path = [s, a, b, c, d, t] ; [Cost = 12]

Path = [s, e, f, g, t] ; [Cost = 11]

No

That is, now we (obviously) have no guarantee that the best
solution would be found first.

Ulle Endriss (ulle@illc.uva.nl) 63

Search Techniques LP&ZT 2005

Properties of A*

A heuristic function h is called admissible iff h(n) is never more
than the actual cost of the best path from n to a goal node.

An important theoretical result is the following:

A* with an admissible heuristic function guarantees
optimality, i.e. the first solution found has minimal cost.

Proof: Let n be a node on an optimal solution path and let n′ be a
non-optimal goal node. We need to show that A* will always pick n

over n′. Let c∗ be the cost of the optimal solution. We get
(1) f(n′) = g(n′) + h(n′) = g(n′) + 0 > c∗ and, due to admissibility
of h, (2) f(n) = g(n) + h(n) ≤ c∗. Hence, f(n) < f(n′), q.e.d.

Also note that A* with any heuristic function guarantees
completeness, i.e. if a solution exists it will be found eventually.

Ulle Endriss (ulle@illc.uva.nl) 64

Search Techniques LP&ZT 2005

Admissible Heuristic Functions

How do we choose a “good” admissible heuristic function?

Two general examples:

• The trivial heuristic function h0(n) = 0 is admissible.

It guarantees optimality, but it is of no help whatsoever in
focussing the search; so using h0 is not efficient.

• The perfect heuristic function h∗, mapping n to the actual cost
of the optimal path from n to a goal node, is also admissible.

This function would lead us straight to the best solution
(but, of course, we don’t know what h∗ is!).

Finding a good heuristic function is a serious research problem . . .

Ulle Endriss (ulle@illc.uva.nl) 65

Search Techniques LP&ZT 2005

Recall the Route Planning Problem

Ulle Endriss (ulle@illc.uva.nl) 66

Search Techniques LP&ZT 2005

Examples for Admissible Heuristics

For the route planning domain, we could think of the following
heuristic functions:

• Let h1(n) be the straight-line distance to the goal location.

This is an admissible heuristic, because no solution path will
ever be shorter than the straight-line connection.

• Let h2(n) be h1(n) + 20%.

An intuitive justification would be that there are no completely
straight streets anyway, so this would be a better estimate than
h1(n). Indeed, h2 may often work better than h1, but it is not
generally admissible (because there may be two locations
connected by an almost straight street). So h2 does not
guarantee optimality.

Ulle Endriss (ulle@illc.uva.nl) 67

Search Techniques LP&ZT 2005

Recall the Eight-Puzzle

Source: Russell & Norvig, Artificial Intelligence

Ulle Endriss (ulle@illc.uva.nl) 68

Search Techniques LP&ZT 2005

Examples for Admissible Heuristics (cont.)

For the eight-puzzle, the following heuristic functions come to mind:

• Let h3(n) be the number of misplaced tiles (so h3(n) will be a
number between 0 and 8).

This is clearly a lower bound for the number of moves to the
goal state; so it is also an admissible heuristic.

• Assume we could freely move tiles along the vertical and
horizontal, without regard for the other tiles. Let h4(n) be the
number we get when we count the 1-step moves required to get
to the goal configuration under this assumption.

This is also an admissible heuristic, because in reality we will
always need at least h4(n) moves (and typically more, because
other tiles will be in the way). Furthermore, h4 is better than
h3, because we have h3(n) ≤ h4(n) for all nodes n.

Ulle Endriss (ulle@illc.uva.nl) 69

Search Techniques LP&ZT 2005

Complexity Analysis of A*

Both worst-case time and space complexity are exponential in the
depth of the search tree (like breadth-first search): in the worst
case, we still have to visit all the nodes on the tree and ultimately
keep the full tree in memory.

The reason why A* usually works much better than basic
breadth-first search anyway, is that the heuristic function will
typically allow us to get to the solution much faster.

Remark: In practice, our implementation of the basic A* algorithm
may not perform that well, because of the high memory
requirements. In the textbook there is a discussion of alternative
algorithms that consume less space (at the expense of taking more
time, which is typically quite acceptable).

Ulle Endriss (ulle@illc.uva.nl) 70

Search Techniques LP&ZT 2005

Summary: Best-first Search with A*

• Heuristics can be used to guide a search algorithm in a large
search space. The central idea of best-first search is to expand
the path that seems most promising.

• There are different ways of defining a heuristic function h to
estimate how far off the goal a given node is; and there are
different ways of using h to decide which node is “best”.

• In the A* algorithm, the node n minimising the sum of the cost
g(n) to reach the current node n and the estimate h(n) of the
cost to reach a goal node from n is chosen for expansion.

• A heuristic function h is called admissible iff it never
over-estimates the true cost of reaching a goal node.

• If h is an admissible heuristic function, then A* guarantees
that an optimal solution will be found (first).

Ulle Endriss (ulle@illc.uva.nl) 71

Search Techniques LP&ZT 2005

Conclusion: Search Techniques for AI

• Distinguish uninformed and heuristic-guided search techniques:

– The former are very general concepts and applicable to
pretty much any computing problem you can think of
(though maybe not in exactly the form presented here).

– The latter is a true AI theme: defining a really good
heuristic function arguably endows your system with a
degree of “intelligence”. Good heuristics can lead to very
powerful search algorithms.

• You should have learned that there is a general “pattern” to
both the implementation of these algorithms and to the
(state-space) representation of problems to do with search.

• You should have learned that analysing the complexity of
algorithms is important; and you should have gained some
insight into how that works.

Ulle Endriss (ulle@illc.uva.nl) 72

