
Backtracking, Cuts and Negation LP&ZT 2005

An Introduction to Prolog Programming

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss (ulle@illc.uva.nl) 1

Backtracking, Cuts and Negation LP&ZT 2005

Backtracking, Cuts and Negation

In this lecture, we are going to look in more detail into how Prolog
evaluates queries, in particular into the process of backtracking.

We are going to discuss both the uses of backtracking and some
associated problems, and introduce a way of explicitly controlling
backtracking (via so-called cuts). We are also going to discuss the
closely related subject of negation.

Ulle Endriss (ulle@illc.uva.nl) 2

Backtracking, Cuts and Negation LP&ZT 2005

Backtracking

Choicepoints: Subgoals that can be satisfied in more than one way
provide choicepoints. Example:

..., member(X, [a, b, c]), ...

This is a choicepoint, because the variable X could be matched with
either a, b, or c.

Backtracking: During goal execution Prolog keeps track of
choicepoints. If a particular path turns out to be a failure, it jumps
back to the most recent choicepoint and tries the next alternative.
This process is known as backtracking.

Ulle Endriss (ulle@illc.uva.nl) 3

Backtracking, Cuts and Negation LP&ZT 2005

Example

Given a list in the first argument, the predicate permutation/2

generates all possible permutations of that list in the second
argument through backtracking (if the user presses ; after every
solution):

permutation([], []).

permutation(List, [Element | Permutation]) :-

select(Element, List, Rest),

permutation(Rest, Permutation).

Ulle Endriss (ulle@illc.uva.nl) 4

Backtracking, Cuts and Negation LP&ZT 2005

Example (cont.)

?- permutation([1, 2, 3], X).

X = [1, 2, 3] ;

X = [1, 3, 2] ;

X = [2, 1, 3] ;

X = [2, 3, 1] ;

X = [3, 1, 2] ;

X = [3, 2, 1] ;

No

Ulle Endriss (ulle@illc.uva.nl) 5

Backtracking, Cuts and Negation LP&ZT 2005

Problems with Backtracking

Asking for alternative solutions generates wrong answers for this
predicate definition:

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Ulle Endriss (ulle@illc.uva.nl) 6

Backtracking, Cuts and Negation LP&ZT 2005

Problems with Backtracking (cont.)

Example:

?- remove_duplicates([a, b, b, c, a], List).

List = [b, c, a] ;

List = [b, b, c, a] ;

List = [a, b, c, a] ;

List = [a, b, b, c, a] ;

No

Ulle Endriss (ulle@illc.uva.nl) 7

Backtracking, Cuts and Negation LP&ZT 2005

Introducing Cuts

Sometimes we want to prevent Prolog from backtracking into
certain choicepoints, either because the alternatives would yield
wrong solutions (like in the previous example) or for efficiency
reasons.

This is possible by using a cut, written as !. This predefined
predicate always succeeds and prevents Prolog from backtracking
into subgoals placed before the cut inside the same rule body.

Ulle Endriss (ulle@illc.uva.nl) 8

Backtracking, Cuts and Negation LP&ZT 2005

Example

The correct program for removing duplicates from a list:

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail), !,

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Ulle Endriss (ulle@illc.uva.nl) 9

Backtracking, Cuts and Negation LP&ZT 2005

Cuts

Parent goal: When executing the subgoals in a rule’s body the
term parent goal refers to the goal that caused the matching of the
head of the current rule.

Whenever a cut is encountered in a rule’s body, all choices
made between the time that rule’s head has been matched
with the parent goal and the time the cut is passed are final,
i.e. any choicepoints are being discarded.

Ulle Endriss (ulle@illc.uva.nl) 10

Backtracking, Cuts and Negation LP&ZT 2005

Exercise

Using cuts (but without using negation), implement a predicate
add/3 to insert an element into a list, if that element isn’t already
a member of the list. Make sure there are no wrong alternative
solutions. Examples:

?- add(elephant, [dog, donkey, rabbit], List).

List = [elephant, dog, donkey, rabbit] ;

No

?- add(donkey, [dog, donkey, rabbit], List).

List = [dog, donkey, rabbit] ;

No

Ulle Endriss (ulle@illc.uva.nl) 11

Backtracking, Cuts and Negation LP&ZT 2005

Solution

add(Element, List, List) :-

member(Element, List), !.

add(Element, List, [Element | List]).

Ulle Endriss (ulle@illc.uva.nl) 12

Backtracking, Cuts and Negation LP&ZT 2005

Problems with Cuts

The predicate add/3 does not work as expected when the last
argument is already instantiated! Example:

?- add(dog, [dog, cat, bird], [dog, dog, cat, bird]).

Yes

Ulle Endriss (ulle@illc.uva.nl) 13

Backtracking, Cuts and Negation LP&ZT 2005

Summary: Backtracking and Cuts

• Backtracking allows Prolog to find all alternative solutions to a
given query.

• That is: Prolog provides the search strategy, not the
programmer! This is why Prolog is called a declarative
language.

• Carefully placed cuts (!) can be used to prevent Prolog from
backtracking into certain subgoals. This may make a program
more efficient and/or avoid the generation of (wrong)
alternatives.

• On the downside, cuts can destroy the declarative character of
a Prolog program (which, for instance, makes finding mistakes
a lot more difficult).

Ulle Endriss (ulle@illc.uva.nl) 14

Backtracking, Cuts and Negation LP&ZT 2005

Prolog’s Answers

Consider the following Prolog program:

animal(elephant).

animal(donkey).

animal(tiger).

. . . and the system’s reaction to the following queries:

?- animal(donkey).

Yes

?- animal(duckbill).

No

Ulle Endriss (ulle@illc.uva.nl) 15

Backtracking, Cuts and Negation LP&ZT 2005

The Closed World Assumption

In Prolog, Yes means a statement is provably true. Consequently,
No means a statement is not provably true. This only means that
such a statement is false, if we assume that all relevant information
is present in the respective Prolog program.

For the semantics of Prolog programs we usually do make this
assumption. It is called the Closed World Assumption: we assume
that nothing outside the world described by a particular Prolog
program exists (is true).

Ulle Endriss (ulle@illc.uva.nl) 16

Backtracking, Cuts and Negation LP&ZT 2005

The \+-Operator

If we are not interested whether a certain goal succeeds, but rather
whether it fails, we can use the \+-operator (negation). \+ Goal

succeeds, if Goal fails (and vice versa). Example:

?- \+ member(17, [1, 2, 3, 4, 5]).

Yes

This is known as negation as failure: Prolog’s negation is defined as
the failure to provide a proof.

Ulle Endriss (ulle@illc.uva.nl) 17

Backtracking, Cuts and Negation LP&ZT 2005

Negation as Failure: Example

Consider the following program:

married(peter, lucy).

married(paul, mary).

married(bob, juliet).

married(harry, geraldine).

single(Person) :-

\+ married(Person, _),

\+ married(_, Person).

Ulle Endriss (ulle@illc.uva.nl) 18

Backtracking, Cuts and Negation LP&ZT 2005

Example (cont.)

After compilation Prolog reacts as follows:

?- single(mary).

No

?- single(claudia).

Yes

In the closed world described by our Prolog program Claudia has
to be single, because she is not known to be married.

Ulle Endriss (ulle@illc.uva.nl) 19

Backtracking, Cuts and Negation LP&ZT 2005

Where to use \+
Note that the \+-operator can only be used to negate goals. These
are either (sub)goals in the body of a rule or (sub)goals of a query.
We cannot negate facts or the heads of rules, because this would
actually constitute a redefinition of the \+-operator (in other words
an explicit definition of Prolog’s negation, which wouldn’t be
compatible with the closed world assumption).

Ulle Endriss (ulle@illc.uva.nl) 20

Backtracking, Cuts and Negation LP&ZT 2005

Disjunction

We already know conjunction (comma) and negation (\+). We also
know disjunction, because several rules with the same head
correspond to a disjunction.

Disjunction can also be implemented directly within one rule by
using ; (semicolon). Example:

parent(X, Y) :- father(X, Y); mother(X, Y).

This is equivalent to the following program:

parent(X, Y) :- father(X, Y).

parent(X, Y) :- mother(X, Y).

Ulle Endriss (ulle@illc.uva.nl) 21

Backtracking, Cuts and Negation LP&ZT 2005

Example

Write a Prolog program to evaluate a row of a truth table. (Assume
appropriate operator definitions have been made beforehand.)

Examples:

?- true and false.

No

?- true and (true and false implies true) and neg false.

Yes

Ulle Endriss (ulle@illc.uva.nl) 22

Backtracking, Cuts and Negation LP&ZT 2005

Solution

% Falsity

false :- fail.

% Conjunction

and(A, B) :- A, B.

% Disjunction

or(A, B) :- A; B.

Ulle Endriss (ulle@illc.uva.nl) 23

Backtracking, Cuts and Negation LP&ZT 2005

Solution (cont.)

% Negation

neg(A) :- \+ A.

% Implication

implies(A, B) :- A, !, B.

implies(_, _).

Ulle Endriss (ulle@illc.uva.nl) 24

Backtracking, Cuts and Negation LP&ZT 2005

Note

We know that in classical logic ¬A is equivalent to A→⊥.
Similarly, instead of using \+ in Prolog we could define our own
negation operator as follows:

neg(A) :- A, !, fail.

neg(_).

Ulle Endriss (ulle@illc.uva.nl) 25

Backtracking, Cuts and Negation LP&ZT 2005

Summary: Negation and Disjunction

• Closed World Assumption: In Prolog everything that cannot
be proven from the given facts and rules is considered false.

• Negation as Failure: Prolog’s negation is implemented as the
failure to provide a proof for a statement.

• Goals can be negated using the \+-operator.

• A disjunction of goals can be written using ; (semicolon).
(The comma between two subgoals denotes a conjunction.)

Ulle Endriss (ulle@illc.uva.nl) 26

