Working with Operators LP&ZT 2005

An Introduction to Prolog Programming

Ulle Endriss

Institute for Logic, Language and Computation
University of Amsterdam

Ulle Endriss (ulle@illc.uva.nl) 1

Working with Operators LP&ZT 2005

Operators in Prolog

Operators provide a more convenient way of writing certain
expressions in Prolog that could otherwise be difficult to read for
humans. For example, we can write 3 * 155 instead of *(3, 155)
or N is M + 1 instead of is(N, +(M, 1)).

Both notations are considered to be equivalent, i.e. matching works:

7- +(1000, 1) = 1000 + 1.

Yes

The objective of this lecture is to show you how you can define

your own operators in Prolog.

Ulle Endriss (ulle@illc.uva.nl) 2

Working with Operators LP&ZT 2005

Operator Precedence

Some operators bind stronger than others. In mathematics, for
example, * binds stronger than +. The degree to which an operator

is binding is called its precedence.

In Prolog operator precedences are numbers (in SWI-Prolog
between 0 and 1200). The arithmetic operator *, for example, has
precedence 400, + has precedence 500. That is, the lower an

operator’s precedence value, the stronger it is binding.

This is why Prolog is able to compute the correct result in the

following example (i.e. not 25):

7- X is 2 + 3 * b,
X =17

Yes

Ulle Endriss (ulle@illc.uva.nl) 3

Working with Operators LP&ZT 2005

Precedence of Terms

The precedence of a term is defined as the precedence of its
principal operator. If the principal functor isn’t (written as) an

operator or the term is enclosed in parentheses then the precedence
is defined as 0.

Examples:
e The precedence of 3 + 5 is 500.
e The precedence of 3 * 3 + 5 x 5 is also 500.
e The precedence of sqrt(3 + 5) is 0.
e The precedence of elephant is 0.
e The precedence of (3 + 5) is 0.

e The precedence of 3 * +(5, 6) is 400.

Ulle Endriss (ulle@illc.uva.nl) 4

Working with Operators LP&ZT 2005

Operator Types
Operators can be divided into three groups:
e infiz operators, like + in Prolog
e prefix operators, like — in logic or - for negative numbers
e postfir operators, like ! in mathematics

Is giving the type of an operator and its precedence already enough
for Prolog to fully “understand” the structure of a term containing

that operator?

Ulle Endriss (ulle@illc.uva.nl) 5

Working with Operators LP&ZT 2005

Example
Consider the following example:

7- X is 26 - 10 - 3.

X =12
Yes
Why not 187

Obviously, precedence and type alone are not enough to fully

specify the structural properties of an operator.

Ulle Endriss (ulle@illc.uva.nl) 6

Working with Operators LP&ZT 2005

Operator Associativity

We also have to specity the associativity of an operator: -, for
example, is left-associative. This is why 25 - 10 - 3 is interpreted
as (256 - 10) - 3.

In Prolog, associativity is represented by atoms like yfx. Here f
indicates the position of the operator (i.e. yfx denotes an infix
operator) and x and y indicate the positions of the arguments. A y
should be read as on this position a term with a precedence lower
or equal to that of the operator has to occur, whereas x means that
on this position a term with a precedence strictly lower to that of

the operator has to occur.

Understand how this makes the interpretation of 25 - 10 - 3
unambiguous (note that - is defined using the pattern yfx)!

Ulle Endriss (ulle@illc.uva.nl) 7

Working with Operators

LP&ZT 2005

Associativity Patterns

Pattern | Associativity Examples
yfx infix left-associative +, -, %
xfy infix right-associative | , (for subgoals)
xfx infix non-associative | =, is, < (i.e. no nesting)
yfy makes no sense, structuring would be impossible
fy prefix | associative
fx prefix | non-associative | - (i.e. —=5 not possible)
yf postfix | associative
xf postfix | non-associative

Ulle Endriss (ulle@illc.uva.nl)

Working with Operators LP&ZT 2005

Checking Precedence and Associativity

You can use the built-in predicate current_op/3 to check
precedence and associativity of currently defined operators.

7- current_op(Prec, Assoc, *).
Prec = 400
Assoc = yfx

Yes

?7- current_op(Prec, Assoc, is).
Prec = 700
Assoc = xfx

Yes

Ulle Endriss (ulle@illc.uva.nl) 9

Working with Operators LP&ZT 2005

Checking Precedence and Associativity (cont.)

The same operator symbol can be used once as a binary and once

as a unary operator:

?7- current_op(Prec, Assoc, -).

Prec = 500

Assoc = fx ;

Prec = 500

Assoc = yfx ;

No

Ulle Endriss (ulle@illc.uva.nl) 10

Working with Operators LP&ZT 2005

Defining Operators

New operators are defined using the op/3-predicate. This can be
done by submitting the operator definition as a query. Terms using
the new operator will then be equivalent to terms using the

operator as a normal functor, i.e. predicate definitions will work.

For the following example assume the big animals program has

previously been compiled:

7- op(400, xfx, is_bigger).

Yes

?- elephant is_bigger dog.

Yes

Ulle Endriss (ulle@illc.uva.nl) 11

Working with Operators LP&ZT 2005

Query Execution at Compilation Time

It is possible to write queries into a program file (using :- as a
prefix operator). They will be executed whenever the program is

compiled.

If for example the file my-file.pl contains the line
:— write(’Hello, have a beautiful day!’).
this will have the following effect:

7- consult(’my-file.pl’).
Hello, have a beautiful day!
my-file.pl compiled, 0.00 sec, 224 bytes.

Yes
?_

Ulle Endriss (ulle@illc.uva.nl) 12

Working with Operators LP&ZT 2005

Operator Definition at Compilation Time
You can do the same for operator definitions. For example, the line
:— op(200, fy, small).

inside a program file will cause a prefix operator called small to be
declared whenever the file is compiled. It can be used inside the

program itself, in other programs, and in user queries.

Ulle Endriss (ulle@illc.uva.nl) 13

Working with Operators LP&ZT 2005

Summary: Operators

e The structural properties of an operator are determined by its

precedence (a number) and its associativity pattern (e.g. yfx).
e Use current_op/3 to check operator definitions.
e Use op/3 to make your own operator definitions.

e Operator definitions are usually included inside a program file
as queries (using :-, i.e. like a rule without a head).

Ulle Endriss (ulle@illc.uva.nl) 14

