
List Manipulation LP&ZT 2005

An Introduction to Prolog Programming

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss (ulle@illc.uva.nl) 1

List Manipulation LP&ZT 2005

Lists in Prolog

One of the most useful data structures in Prolog are lists. The
objective of this lecture is to show you how lists are represented in
Prolog and to introduce you to the basic principles of working with
lists.

An example for a Prolog list:

[elephant, horse, donkey, dog]

Lists are enclosed in square brackets. Their elements could be any
Prolog terms (including other lists). The empty list is [].

Another example:

[a, X, [], f(X,y), 47, [a,b,c], bigger(cow,dog)]

Ulle Endriss (ulle@illc.uva.nl) 2

List Manipulation LP&ZT 2005

Internal Representation

Internally, the list

[a, b, c]

corresponds to the term

.(a, .(b, .(c, [])))

That means, this is just a new notation. Internally, lists are just
compound terms with the functor . (dot) and the special atom []

as an argument on the innermost level.

We can verify this also in Prolog:

?- X = .(a, .(b, .(c, []))).

X = [a, b, c]

Yes

Ulle Endriss (ulle@illc.uva.nl) 3

List Manipulation LP&ZT 2005

The Bar Notation

If a bar | is put just before the last term in a list, it means that
this last term denotes a sub-list. Inserting the elements before the
bar at the beginning of the sub-list yields the entire list.

For example, [a, b, c, d] is the same as [a, b | [c, d]].

Ulle Endriss (ulle@illc.uva.nl) 4

List Manipulation LP&ZT 2005

Examples

Extract the second element from a given list:

?- [a, b, c, d, e] = [_, X | _].

X = b

Yes

Make sure the first element is a 1 and get the sub-list after the
second element:

?- MyList = [1, 2, 3, 4, 5], MyList = [1, _ | Rest].

MyList = [1, 2, 3, 4, 5]

Rest = [3, 4, 5]

Yes

Ulle Endriss (ulle@illc.uva.nl) 5

List Manipulation LP&ZT 2005

Head and Tail

The first element of a list is called its head. The rest of the list is
called its tail. (The empty list doesn’t have a head.)

A special case of the bar notation — with exactly one element
before the bar — is called the head/tail-pattern. It can be used to
extract head and/or tail from a list. Example:

?- [elephant, horse, tiger, dog] = [Head | Tail].

Head = elephant

Tail = [horse, tiger, dog]

Yes

Ulle Endriss (ulle@illc.uva.nl) 6

List Manipulation LP&ZT 2005

Head and Tail (cont.)

Another example:

?- [elephant] = [X | Y].

X = elephant

Y = []

Yes

Note: The tail of a list is always a list itself. The head of a list is
an element of that list. The head could also be a list itself (but it
usually isn’t).

Ulle Endriss (ulle@illc.uva.nl) 7

List Manipulation LP&ZT 2005

Appending Lists

We want to write a predicate concat_lists/3 to concatenate
(append) two given lists.

It should work like this:

?- concat_lists([1, 2, 3, 4], [dog, cow, tiger], L).

L = [1, 2, 3, 4, dog, cow, tiger]

Yes

Ulle Endriss (ulle@illc.uva.nl) 8

List Manipulation LP&ZT 2005

Solution

The predicate concat_lists/3 is implemented recursively. The
base case is when one of the lists is empty. In every recursion step
we take off the head and use the same predicate again, with the
(shorter) tail, until we reach the base case.

concat_lists([], List, List).

concat_lists([Elem|List1], List2, [Elem|List3]) :-

concat_lists(List1, List2, List3).

Ulle Endriss (ulle@illc.uva.nl) 9

List Manipulation LP&ZT 2005

Do More

Amongst other things, concat_lists/3 can also be used for
decomposing lists:

?- concat_lists(Begin, End, [1, 2, 3]).

Begin = []

End = [1, 2, 3] ;

Begin = [1]

End = [2, 3] ;

Begin = [1, 2]

End = [3] ;

Begin = [1, 2, 3]

End = [] ;

No

Ulle Endriss (ulle@illc.uva.nl) 10

List Manipulation LP&ZT 2005

Built-in Predicates for List Manipulation

append/3: Append two lists (same as our concat_lists/3).

?- append([1, 2, 3], List, [1, 2, 3, 4, 5]).

List = [4, 5]

Yes

length/2: Get the length of a list.

?- length([tiger, donkey, cow, tiger], N).

N = 4

Yes

Ulle Endriss (ulle@illc.uva.nl) 11

List Manipulation LP&ZT 2005

Membership

member/2: Test for membership.

?- member(tiger, [dog, tiger, elephant, horse]).

Yes

Backtracking into member/2:

?- member(X, [dog, tiger, elephant]).

X = dog ;

X = tiger ;

X = elephant ;

No

Ulle Endriss (ulle@illc.uva.nl) 12

List Manipulation LP&ZT 2005

Example

Consider the following program:

show(List) :-

member(Element, List),

write(Element),

nl,

fail.

Note: fail is a built-in predicate that always fails.

What happens when you submit a query like the following one?

?- show([elephant, horse, donkey, dog]).

Ulle Endriss (ulle@illc.uva.nl) 13

List Manipulation LP&ZT 2005

Example (cont.)

?- show([elephant, horse, donkey, dog]).

elephant

horse

donkey

dog

No

The fail at the end of the rule causes Prolog to backtrack. The
subgoal member(Element, List) is the only choicepoint. In every
backtracking-cycle a new element of List is matched with the
variable Element. Eventually, the query fails (No).

Ulle Endriss (ulle@illc.uva.nl) 14

List Manipulation LP&ZT 2005

More Built-in Predicates

reverse/2: Reverse the order of elements in a list.

?- reverse([1, 2, 3, 4, 5], X).

X = [5, 4, 3, 2, 1]

Yes

More built-in predicates can be found in the reference manual.

Ulle Endriss (ulle@illc.uva.nl) 15

List Manipulation LP&ZT 2005

Summary: List Manipulation

• List notation:

– normal: [Elem1, Elem2, Elem3] (empty list: [])

– internal: .(Elem1, .(Elem2, .(Elem3, [])))

– bar notation: [Elem1, Elem2 | Rest]

– head/tail-pattern: [Head | Tail]

• Many predicates can be implemented recursively, exploiting the
head/tail-pattern.

• Built-in predicates: append/3, member/2, length/2, . . .

Ulle Endriss (ulle@illc.uva.nl) 16

