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PERCEPTRON LEARNING RULE CONVERGENCE THEOREM  
 

PERCEPTRON CONVERGENCE THEOREM: Says that there if there is a weight 
vector w* such that f(w*p(q)) = t(q) for all q, then for any starting vector w, the 
perceptron learning rule will converge to a weight vector (not necessarily unique 
and not necessarily w*) that gives the correct response for all training patterns, 
and it will do so in a finite number of steps. 

 
IDEA OF THE PROOF: The idea is to find upper and lower bounds on the length 
of the weight vector. If the length is finite, then the perceptron has converged, 
which also implies that the weights have changed a finite number of times. 
 
PROOF:  
 
1) Assume that the inputs to the perceptron originate from two linearly separable 

classes. That is, the classes can be distinguished by a perceptron. Let X1 
be the subset of training vectors belonging to C1. That is, p(1), p(2),... . Let X2 
be the set of training vectors belonging to C2. That is, p(1), p(2),... . Then we 
can say that X1 ∪ X2 is the complete training set X. 

 
2) Given the set of vectors X1 and X2 to train this perceptron to train this 

perceptron, the training process (as we have seen) involves the adjustment of 
the weight vector w such that C1 and C2 are linearly separable. That is, there 
exists some w such that 

 
3) wTp > 0 for every input vector p ∈ C1 
4) wTp < 0 for every input vector p ∈ C2 

 
3) What need to do is find some w such that the above is satisfied, which is the 

purpose of the perceptron algorithm. 
 

One algorithm for adapting the weight vector for the perceptron algorithm can 
be formulated as follows (there are others): 

 
 

a. If the kth member of the training set p(k) is correctly classified at the kth 
iteration no correction is made to w. This is done according to the 
following rule: 

 
 

w(k+1) = w(k) if wTp(k) > 0 and p(k) ∈ C1 
w(k+1) = w(k) if wTp(k) < 0 and p(k) ∈ C2 

 
 

(1)

(2)
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b. Otherwise, the weight vector of the perceptron is updated according to 
the following rule: 

 
w(k+1) = w(k) – p(k) if wTp(k) > 0 and p(k) ∈ C2 
w(k+1) = w(k) + p(k) if wTp(k) < 0 and p(k) ∈ C1 

 
4) The proof begins assuming that w(1) = 0 (i.e., the zero vector). Suppose that 

wT(k)p(k) < 0 for k = 1, 2, ..., and all the input vectors p(k) ∈ X1 (or C1).  
 

Here, the perceptron incorrectly classifies the vectors p(1), p(2),... since the 
second condition in Equation (1) is violated (i.e., wT(k)p(k) should be greater 
than 0). Now we can use Equation (3) to write the adjustments to the weight 
matrix according to the perceptron learning rule 

 
w(k+1) = w(k) + p(k) for p(k) ∈ C1 

 
Recall, what we are doing is modifying the weight vector so that it points in  
the right direction. 

 
5) Given the initial condition w(1) = 0, we can iteratively solve for w(k+1) 

obtaining: 
 

w(k+1) = p(1) + p(2) + ... + p(k) 
 
CLS EXERCISE: Show w(k+1) = p(1) + p(2) + ... + p(k) 
 
 
ANSWER: 
 
w(1) = 0 
w(2) = w(1) + p(1) = p(1) 
w(3) = w(2) + p(2) = w(1) + p(1) + p(2) = p(1) + p(2) 
w(4) = w(3) + p(3) = w(2) + p(2) + p(3) = w(1) + p(1) + p(2) + p(3)  
         = p(1) + p(2) + p(3) 
 
So, in general: 
 
w(k+1) = p(1) + p(2) + ... + p(k) 
 
 

Since C1 and C2 are assumed to be linearly separable, then there exists a wo 
that can correctly classify all input vectors belonging to C1 and C2. 
 

(3)

(4)

(5)
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In this proof, we have assumed the existence of wo for which 
 

wo
Tp(k) > 0 if p(k) ∈ C1 

 
and 
 

wo
Tp(k) < 0 if p(k) ∈ C2 

 
This is equivalent to the existence of a weight vector wo for which 
 

wo
Tp(k) > 0 if p(k) ∈ C1 ∪ C2 or X 

 
The reason is that the training set can be considered to consist of two parts: 
 

C1 = {p such that the target value is 1} 
 
and 
 

C2 = {p such that the target value is 0} 
 
So we can think of the training set X as 
 

X = C1 ∪ C2 
 
where 
 

C2 = {-p such that p ∈ C2} 
 
Now, if the response for the network is incorrect, then this allows the weights 
to be updated according to: 
 

w(k+1) = w(k) + p(k) 
 
since -wo

Tp(k) < 0 � wo
Tp(k) > 0 if p(k) ∈ C2. Now in this case the perceptron 

is updated by w(k+1) = w(k) – (–p(k)) = w(k+1) = w(k) + p(k) since wTp(k) > 0 
and p(k) ∈ C2. 
 
 
For the solution wo, we can define some α > 0 as 

 
)(kmin

(k)
pwT

o
p X∈

=α  

 
which is just the minimum (scalar) value of all wo

Tp(k) for all p ∈ X. 
 
 

(6)
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6) By multiplying each side of Equation (5) by wo
T, we get 

 
 
 

wo
Tw (k+1) = wo

Tp(1) + wo
Tp(2) + ... + wo

Tp(k) 
 
 
 

7) And, by applying Equation (6), we get 
 
 

wo
Tw (k+1) ≥ kα 

 
 

since wo
Tw(k+1) has to be greater than or equal to k × )(kmin

(k)
pwT

o
p X∈

 

 
 
8) Next, use the Cauchy-Swartz inequality for wo

T and wo
T(k+1), which states for 

any two vectors x and y: 
 
 

[x ⋅ y]2 ≤ ||x||2 ||y||2 
 
 

or 
 
 

||x||2 ≥ [x ⋅ y]2 / ||y||2 
 
 

where ||x|| is the Euclidian norm. 
 
 
Example. Suppose x = [-1 0 4]. Then, ( ) 17401 22 =++−=x . 
 
 
Thus, we can say: 
 

 
||wo

T||2 ||w(k+1)||2 ≥ [wo
Tw (k+1)]2 

 

(7)

(8)
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9) From Equation (7), we know by applying Cauchy-Swartz that  
 
 

wo
Tw (k+1) ≥ kα  � 

 
||wo

T||2 ||w (k+1)||2 ≥ [kα]2 � 
 
||wo

T||2 ||w(k+1)||2 ≥ k2α2   
 

and we get: 
 

w
w

o
2

α 22
2 k1)(k ≥+  

 
 

which shows that the squared length of the weight vector (||w(k+1)||2) grows  
by a factor of k2, where k is the number of time the weights have changed. 

 
 
10) So, what we have established from Equation (9) is a lower-bound in the 

terms of the squared Euclidian norm of the weight vector w at iteration k + 1. 
 
 
But there is another aspect we must consider. In order to show that the 
weights cannot continue to grow indefinitely, we must establish an upper-
bound for the weight vector w. 
 
 

11)  To find an upper-bound, we now do the following. Write Equation (4) as the 
following (where q is the number of patterns in X): 

 
 

w(k+1) = w(k) + p(k) for k = 1,...,q  p(k) ∈ X 
 
 
12)  After taking the square of the Euclidian norm, we get 
 
 

||w(k+1)||2 = ||w(k)||2 + 2wT(k) p(k) + ||p(k)||2 
 

13) But assuming that the perceptron incorrectly classifies an input vector 
belonging to X (i.e., we have to make the adjustment w(k+1) = w(k) + p(k) ) 
since wT(k) p(k) < 0, then from Equation (10), it follows that: 

 
||w(k+1)||2 ≤ ||w(k)||2 + ||p(k)||2 

(9)

(10)
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CLS EXERCISE: Why can we make this claim? 
 
ANSWER: 
 
Because since the input vector p(k) was incorrectly classified, this implies that 
wT(k) p(k) < 0. Thus, given that ||w(k+1)||2 = ||w(k)||2 + 2wT(k) p(k) + ||p(k)||2, then 
clearly 2wT(k) p(k) must be < 0 also. Thus, we can claim that: 
 

||w(k+1)||2 ≤ ||w(k)||2 + ||p(k)||2 . 
 
 

We can rewrite the above as: 
 

||w(k+1)||2 - ||w(k)||2 ≤ ||p(k)||2 
 
14) Adding these quantities for k = 1,...,q (where q is the number of patterns in 

C1) and using the initial condition that w(1) = 0, it can be shown (this will be 
for homework) that: 

 

( )

βk

(n)1k
k

1n

≤

≤+ �
=

pw 22

 

 
where β > 0 and is defined by the following: 

 
 

(k)max
(k)

p
p

2

X∈
=β  

 
 
15)  Equation (13) says that the Euclidian norm of the weight vector w(k+1), 

grows at most linearly with the number of iterations, k, given the input 
patterns. In other words, 

 
( ) βk1k ≤+w 2 . 

 
 
16) Thus, we have established both upper and lower bounds for a perceptron to 

classify correctly the input patterns p(k) for k = 1,...,q for two class C1 and C2 
given they are lineary separable. 

 
 

(11)

(12)

(13)

(14)
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17)  Observe that ( ) βk1k ≤+w 2  conflicts with the earlier result of 

w
w

o
2

α 22
2 k1)(k ≥+ ; namely, it can be shown that they don’t agree for ||w(k+1)|| 

for large values of k.  
 

So we can state that k cannot be larger than some kmax for which Equations 
(9) and (14) are both satisfied; and they must be equal to determine the 
maximum number of iterations for the two linearly separable classes to 
converge.  

 
To determine this, set Equations (9) and (14) equal to each other and 
substitute and solve for kmax. Thus we get, 
 
 

βα
kk

max

2
max

2

=
wo

2 , 

 

α
β

2

2
wo=kmax . 

 
which means that changing the weights of the perceptron must terminate after 
at most kmax iterations, which means that the machine has solved the (linearly 
separable) problem correctly. 

 
 
 


