
Transductive learning

In classical machine learning the result of the inference relies only on the training set and it is always independent of 
the test set. Whilst statistically sound and reasonable, many applications have a large number of unlabeled input 
which cannot be used in training, as for example in chemical or biological areas where there is a plethora of 
experimental result but labelling them -- or giving a ``desired value'' for an experimental outcome is very expensive 
and time-consuming (this type of problem is tackled in active learning). 

In transductive learning the situation, from the machine learning point of view is simpler, but similar: all unlabeled 
points belong to the test set. This means additional information for the learning algorithm that needs to be exploited 
and it can be particularly important for nonparametric methods: the performance of the sparse inference using a 
subset of the training inputs can significantly vary as a function of the location of the subset (Basis-, Support- or 
Relevance- Vector set) on which the approximation is based. 

The inclusion of this special knowledge within the GP inference scheme was recently presented in Schwaighofer, 
Tresp (2003). The inference using this special knowledge is called query learning and the query points are merely a 
different name for the test points. 

The methodology proposed here is similar to the above method: the set of Basis Vectors is fixed a-priori to the set of 
query points. The GP is initialised with the query set but no training output data, accomplished by a constant 
likelihood. We can then perform pseudo-learning to learn the locations of the query points - remember that the 
associated GP, although having a different representation, is still the prior process. 

Having this modified representation for the prior process, we can iterate the sparse learning which first projects the 
GP to the set of Basis Vectors (which is the query set). The BV set is unaltered during learning. 

In the following a MATLAB code is presented that learns the two-dimensional sinc function f(x,y)=sin(r)/r where r 
is the radius of the two-dimensional input in polar coordinates. The function is available within the OGP package, 
named demogp_fixed (uses a fixed BV set). 

Fig.1 below shows the location of the training set (smaller black 'x' signs) and the Basis Vectors which is also the 
query set. On Fig.2 one sees the result of the OGP inference using the query set. Note that due to the (in this case 
purposeful) mismatch of model parameters and the function to be approximated, the approximation is quite poor. 

http://homepage.kyb.local/bs/people/csatol/ogp/glossary.html#BV
http://homepage.kyb.local/bs/people/csatol/ogp/examples/thesis/Bibliography.html#TippingJMLR01
http://homepage.kyb.local/bs/people/csatol/ogp/code/index.html
http://homepage.kyb.local/bs/people/csatol/ogp/code/www/demogp_fixed.html


 

Figure 1. The location of the (200) training data and the (49) query points. 

 

Figure 2. The initial result of the inference using the predefined set of hyperparameters. It can be seen that the fit at 
the training locations is not particularly good, since the GP cares now only about the query point locations, placed 
on a 7x7 rectangular grid. The semi-transparent cover is the function to pe approximated and the surface with the 
local humps is the actual approximator. 

Further on, as the hyperparameters are better fitted to the function, the approximation via transductive learning 
becomes better. This is visualised on Figs. 3 and 4. The algorithm automatically detects that the smoothness of the 
function allows an even sparser representation and many elements of the query set are removed (they are redundant), 
as can be seen from comparing the initial configuration from Fig. 1 with that of Fig. 5. The Matlab code is explained 



in the Section following the figures. 

 

Figure 3. The function approximation after a single hyper-parameter optimisation step -- an optimisation procedure 
of the marginal likelihood. It can be seen that the approximation now is much better - this is due to the better fit of 
the GP lengthscale parameters to the function. 

 

Figure 4. The approximating and the true funtions after 5 steps of iterating between the optimisation of the GP 
parameters with fixed hyperparameters and optimising the hyperparameters whilst keeping the GP parameters fixed. 



 

Figure 5. Since the surface of the function to be approximated is smooth, there are no need for that many Basis 
Vectors. The final configuration of the OGP structure includes only 25 elements (sampling or computation with 
fewer Basis Vectors is faster). Yet it is clear that the approximation performance is not affected. 

Matlab code

The matlab file, provided in the code section of these pages, is called demogp_fixed.m. 

First some definitions related to the data generation: 

sig02   = 0.3;                % noise variance
nType   = 'gauss';            % noise TYPE
nTest   = 49;                 % TEST set size = BV 
SET size
nTrain  = 200;                % TRAINING set size
gX      = [-20:0.5:20];
gN      = length(gX);
[pX pY] = meshgrid(gX);
pX      = [pX(:) pY(:)];
    

Then the training and test datasets are generated: 

% training points are randomly placed
[xTrain, yTrain] = sinc2data(nType,nTrain,sig02,
[],0,20,20);
% test points are on a grid
[xTest,  yTest]  = sinc2data(nType,nTest,0,
[],1,20,20);

http://homepage.kyb.local/bs/people/csatol/ogp/code/www/demogp_fixed.html


    

We initialise the OGP structure. The first function is similar to a "constructor", the second function specifies the 
likelihood we are using, then the threshold value thresh - for numerical stability - is set. 

netF = ogp(2, ...             % input dimension
           1, ...             % output dimension
           'sqexp', ...       % kernel type
           [1/[2 2] 3 0]);    % kernel parameter
netF = ogpinit(netF, ...
               @c_reg_gauss,...
               0.5, ...       % initial value for the 
lik. par.
               @em_gauss);    % function to adjust 
lik. noise
netF.thresh    = 1e-1;        % the admission 
threshold for new BVs
    

The next two lines set up the transductive- or query learning: we initialise the BV-s of the OGP structure with the 
test set locations. 

% FIXED BV set
netF = ogpemptybv(netF,xTest(randperm(size
(xTest,1)),:));
netF.isBVfixed = 1;
    

Code that controls the various parameters that will be displayed during learning (not really important). 

% What to print out during learning
gpopt = defoptions;           % default values
gpopt.pavg  = 1;              % log-average
gpopt.ptest = 1;              % test error
gpopt.xtest = xTest;          % the test inputs
gpopt.ytest = yTest;          % desired outputs
gpopt.disperr=0;
gpopt.freq  = 10;             % frequency of 
measuring the errors
gpopt.postopt.isep  = 1;      % USING the TAP/EP 
algorithm
gpopt.postopt.itn   = 3;      % number of EP 
iteration with CHANGING BVs
gpopt.postopt.fixitn= 2;      % FIXING the BV set.

    

The sequence of training and hyper-parameter estimation. 

optT = gpopt;              % options for the 



experiment
for iHyp=1:5;

  [netF,optT]    = ogptrain(netF,xTrain,yTrain,optT);

  [netF,optT.ep] = ogpreset(netF,optT.ep);

  fixErr(bInd,:) = optT.testerror;
end;

and the rest of the code involves plotting and visualisation (not explained here, see demogp_fixed for details) 
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Questions, comments, suggestions: contact Lehel Csató. 
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