
Important: since it is quite technical, some text is mainly copy-pasted from the thesis (see 
References). For a concise introduction look at Csato, Conford, Opper (2001). 

Data Assimilation with sparse 
GPs

Inferring wind-fields from remote observations poses two issues that need to be 
tackled: the first one is to represent two-dimensional Gaussian fields, or 
processes (for each location we have random variables specifying the X-, and 
Y-directions. 
The second problem is the inference with the inherently non-tractable 
likelihood model, governed by the underlying physics governing the wave 
formation and light reflection from water surfaces. 

Inference with Vector Gaussian processes

Due to the pair of Gaussian random variables z at each location, the kernel function W0

(x,y) is a 2×2 matrix, specifying the pairwise cross-correlation between the components 
at different spatial positions (notice that the notation of the kernel function is different). 
In the following z denotes the random vector corresponding to the wind-field at a single 

position and where  = [z1,...,zN]T denotes the concatenation of the local wind field 

components zi. These components are random variables corresponding to a spatial 

location xi. These locations specify the prior covariance matrix for the vector , given 

by W0 = {W0(xi,xj)}ij = 1
N. The two-dimensional Gaussian p0 is the prior GP 

marginalised at zi, with zero-mean and covariance W0i. 

In order to have a global model from the N, we combine them with a zero-mean vector 
GP [13,47]: 

q( )  p(si|zi) p0( |W0) 

where si is the vector of local observations at spatial location xi and zi is the 

corresponding vector of random variables. 

The representation of the posterior GP thus requires vector quantities: the marginal of the 
vector GP at a spatial location x (and y for the covariance) has a bivariate Gaussian 
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distribution with mean and covariance function of z
x
  2 represented as: 

 (170)

where 
z
(1),

z
(2),...,

z
(N) and {C

z
(ij)}i, j = 1, N are the coefficients of the vector GP 

describing the posterior mean and variance respectively. Although technical details, the 
quantities in are not scalars, one has to ``re-shuffle'' the expression in eq. (170). 

Notice that this is exactly the same representation as for the scalar random variables, but 
due to the coupling in the likelihood model we have coupling in the representation of the 
posterior also. 

Again, as with other likelihood models, in order to have a representation to the posterior, 
one has to compute the average of the likelihood p(si|zi). The different methods of 

performing the inference are detailed next. 

Dealing with the likelihood

The likelihood is complex non-Gaussian and non-linearly dependent of the wind-
direction. In the simplest case we assume that the scatterometer reads the output of a 
known nonlinear transformation but this output is corrupted by non-gaussian noise. 
Either the nonlinearity or the non-gaussianity make the posterior process non-tractable 
analytically. We present methods to approximate this non-tractable model. 

Local inverse model:

Instead of using the direct likelihood p(si|zi), we transform eq. (170) using Bayes 

theorem to obtain the following expression for the posterior: 

q( )  p0( |W0) (169) 

where a mixture density network (MDN) [4] is used to model the conditional dependence 
of the local wind vector zi = (ui, vi) on the local scatterometer observations si: 
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pm(zi|si, ) = (zi|cij, ) (168)

where  is the union of the MDN parameters: for each observation at location xi we 

have the weightings  for the local Gaussians (cij, ) where cij is the mean and 

 is the variance. The parameters of the MDN are determined using an independent 

training set [22] and are considered known in this section. The prior GP, which also has a 
set of hyper-parameters, was tuned carefully to represent features seen in real wind fields 
and is also known here. 

This method of dealing with likelihoods was presented in the Wind-Field estimation 
section from the thesis (click here to see it). 

Forward models 

Here the forward wind-field to scatterometer mapping was learned using a truncated 
Fourier series for the scatterometer values and the coefficients of the Fourier series were 
the outputs of RBF networks whose inputs are the relative wind direction (to the 
satellite) and the incidence angle. 

A gaussian noise model was assumed and a Taylor expansion of the RBF networks has 
been made, obtaining an approximation to the log-average. 
The problem with this model is that it does not have a meaningful approximation for low 
wind-speeds, thus there has to be an initial small wind-direction. 

For details look in (Cornford et.al. 2003). 

Sampling from the local posterior 

This approach also used the inferred Fourier series about the forward models from batch 
training, but rather than doing a Taylor expansion of the RBF functions in the likelihood, 
it used importance sampling instead. 

The update coefficients were computed from the sampling mean and covariances of the 
resulting local posterior approximation. 

Results

The results of the above methods were roughly similar, but their stability was different. 
Due to the local symmetries present in the model -- opposite wind-fields tend to produce 
very similar waves -- there are several local minima in which the inference can get 
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trapped. 

The forward model, if used with a zero-mean prior Gaussian process, gave inconsistent 
solutions, thus several restarts were needed. The solutions of the remaining two models 
were fairly consistent. 

      

Figure 1. The results of the direct inverse model. The left sub-figure shows the inference 
when the GP representation was kept intact (189 in this case) and this is to be contrasted 
with the right sub-figure where only 38 BVs gave the same mean function, but with 
higher posterior uncertainty, illustrated with larger ellipses. 



      

Figure 2. Results from the same data using the sampling procedure (different colour 
coding). The left sub-figure shows the inference with a high number of BVs (100) whilst 
there are only 20 BVs kept to represent the posterior GP. As in the previous case, the 
uncertainties corresponding to a spatial location is illustrated using ellipses. 

Problems

The plots below show the problems one can encounter if using sampling to obtain the 
update coefficients. 



     

 

Figure 3. Contour plots of the local Gaussian prior (dashed line) and the posterior 
computed using importance sampling. We see that the variance along the Y-axis is very 
elongated, much longer than the associated prior distribution. The iterative 
approximation trimmed the long tail of the posterior to that of the prior, keeping the 
inference numerically stable. 
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Questions, comments, suggestions: contact Lehel Csató. 
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