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Faculty of Mathematics and Informatics, Babeş-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania

{BBOTI,JAKABH,CSATOL}@CS.UBBCLUJ.RO

Abstract—Input noise is common in situations when data either
is coming from unreliable sensors or previous outputs are used
as current inputs. Nevertheless, most regression algorithms do
not model input noise, inducing thus bias in the regression. We
present a method that corrects this bias by repeated regression
estimations. In simulation extrapolation we perturb the inputs
with additional input noise and by observing the effect of this
addition on the result, we estimate what would the prediction
be without the input noise. We extend the examination to a
non-parametric probabilistic regression, inference using Gaussian
processes. We conducted experiments on both synthetic data and
in robotics, i.e., learning the transition dynamics of a dynamical
system; showing significant improvements in the accuracy of the
prediction.

I. INTRODUCTION

Automatically extracting information from collected data is
a common practice and much research is focused on improv-
ing the information extraction algorithms. For regression this
information is a function: we search for the best mapping
of inputs to values in an output space. For inference to be
performed, first a candidate function class is chosen. Secondly,
we have to model the data observation process, i.e., we have
to consider possible perturbations to the observed values, both
at the input and at the output levels, i.e. noise. According
to Jaynes and Bretthorst [8], inference from observed data
without noise modeling is ill-posed, thus, we highlight two
cases when noise is required: (1) we have no knowledge about
the “true” data generation mechanism, meaning that any model
will only partially reconstruct the data, the un-modeled part
being added to the output noise; (2) inputs are inaccurate,
coming from unreliable sensors or from a prediction at a
different level, where noise is inevitable, thus, we have input
noise. Conventional modeling only assumes output noise and
input noise is neglected; mainly because it leads to analytical
intractability or – for linear models and additive noises – it
cannot be separated from output noise.

In this paper, we analyze regression in the presence of the
input noise and we choose as regressors the non-parametric
Gaussian processes (GPs). Assuming noisy inputs, we use the
simulation extrapolation method [3, 2] to improve the approxi-
mation given by the GPs (referred to as SIMEXGP). Exploiting
the possibility of probabilistic inference, the SIMEXGP method
inherits the main advantages of both GP and the simulation
extrapolation methods.

Owing to their non-parametric nature1 GPs – or kernel
methods in general – are popular due to their “automatic”
adaptation to varying data set sizes and varying problem com-
plexities: the same algorithm is likely to produce meaningful
results in a wider variety of settings. The added benefit of
GPs [14] comes from their probabilistic nature: they not only
provide point-wise estimates but also “confidence” in the form
of posterior variances – for more details see Section II.

The contribution of the paper is threefold: (1) we extend
simulation extrapolation to arbitrary function approximation,
e.g., non-parametric function approximation; (2) we apply sim-
ulation extrapolation to probabilistic function approximation
models, such as GPs. The resulting approximation is also a
probability distribution; (3) we show that, with simplifying
assumptions, the method reduces to the Hessian–corrected
input noise modeling [1].

The paper is organized as follows: Section II introduces
the input noise GP framework with the related work in
Section II-A. Section III presents our method in details. Exper-
iments with artificial data and from a robotic setup are shown
in Section IV; conclusions and future research is discussed in
Section V.

II. MODEL DEFINITION AND RELATED WORK

In what follows we assume a data–set DDD = {(wi, yi)}Ni=1
where both the inputs wi and the labels yi are corrupted with
noise:

yi = f̃(xi) + ηi, wi = xi + εi, (1)

where yi ∈ IR is the observed noisy label – or output –,
f̃(xi) ∈ IR is the true label given by an unknown function
at an input location xi ∈ IRd – d is the dimension of the
input space. The locations are also unobserved, we have their
noisy version only: wi ∈ IRd. We assume in what follows
ηi ∼ N (0,Φ) and εi ∼ N (0,Σ) are the output and the input
noise respectively.

The goal is to find a function f that best predicts the labels
at previously unseen – test – inputs w∗.2 In the rest of the paper
we use bold to denote vectors, e.g. www = [wi]

N
i=1 ∈ IRN×d and

use bold capitals to denote matrices, e.g. IIIN ∈ IRN×N is the
identity matrix of size N .

1The word non-parametric means that the number of parameters is not fixed:
this number varies with the size of the data-set.

2We use w∗ as test input in prediction. Whether or not test inputs are noisy
is application dependent and – for notational simplicity – we considered noisy
inputs.
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For regression we use GPs that are non-parametric Bayesian
methods [14]. Given the training set, the prediction of a GP
for a test input w∗ is a Gaussian–distributed random variable
with mean µ∗ and variance σ2

∗ where

µ(w∗) = kkk>∗ (KKK + IIINΦ)
−1
yyy

σ2(w∗) = k(w∗, w∗)− kkk>∗ (KKK + IIINΦ)
−1
kkk∗, (2)

with kkk∗ ∈ IRN×1 and KKK ∈ IRN×N have elements kkki∗ =
k(w∗, wi) andKKKij = k(wi, wj) respectively; Φ is the variance
of the label noise and IIIN is the identity matrix of size N .
The main entity in GP approximation is the positive definite
kernel function k : IRd × IRd → IR – a generalization of
the positive definite covariance matrix [16, 14]. Kernels define
our prior knowledge about the regression in general, e.g.,
smoothness or periodicity. Observe that once the kernel is
chosen, we compute the GP solution based on Equation (2).
To increase flexibility, most kernels have tunable parameters
θθθ, called hyper-parameters. The hyper-parameters can be tuned
efficiently by maximizing the log-likelihood – or evidence –
of the training data with respect to θθθ:

log p(yyy|www,θθθ) = −1

2
yyy>(KKK + IIIΦ)−1yyy −

−1

2
log |KKK + IIIΦ| − N

2
log 2π.

Second order gradient ascent search methods lead to good
hyper-parameter values [11, 14], this procedure is used in our
experiments.

A. Related Work
A first approach to tackling input noise within GP modeling

is to use Taylor approximation of the GP posterior. Based
on the second order expansion, Girard and Murray-Smith [6]
approximated posterior moments and for linear and squared
exponential kernels they provided analytical expressions; this
method has been extended to other kernel functions by Dallaire
et al. [4]. Using a known input noise Girard and Murray-Smith
[5], proposed different approximations such as approximate
moments, exact moments with linear and squared exponential
kernels, and they also used a Monte Carlo integration of the
noise. A first order Taylor approximation to the objective
function around the noisy inputs led to a correction in predicted
value proportional to the gradient of the GP, suggested by
McHutchon and Rasmussen [12]. Their method involves solv-
ing a non-linear differential equation, thus, only an iterative
approximation is proposed in their work.

A second approach is sampling-based: in Goldberg et al.
[7] a second GP was used to model the input noise process
together with a Monte Carlo integration for the posterior. Due
to the limitations of Monte Carlo integration, this approach
is difficult to be used in high-dimensional setup. Similar in
setup, Kersting et al. [9] assumed varying – heteroscedastic –
input noise and used a pair of GPs: one for the output values
and a second for input noise variance. To decouple the two
processes and to learn the hyper-parameters of the two GPs,
an EM–style algorithm was proposed. Lázaro-Gredilla and

Titsias [10], in a similar heteroscedastic setup, used variational
approximations for the same scope. Last we mention the
work of Quiñonero-Candela and Roweis [13] that suggestsed
a precise estimation of the input locations: the most probable
input locations were being computed also with an EM–style
algorithm. This algorithm was prone to overfitting.

III. SIMULATION EXTRAPOLATION

Simulation extrapolation (SIMEX) was introduced by Cook
and Stefanski [3] in statistics for parameter estimation of
regression models with input noise (more precisely Berkson
errors [2]). Although the description was only for parametric
models, here we present simulation extrapolation to general
regression models so that it can accommodate GPs. In Sec-
tion III-C we extend the algorithm to probabilistic models,
leading to a full probabilistic simulation extrapolation.

In what follows we provide an overview of the method.
Since SIMEX is independent of the output noise, in this section
we omit it and focus only to the noise in the input. Based on
our model from Equation (1), the observed label can be written
as y = f(w) = f(x+εx), In SIMEX we introduce a parameter
λ and define the mapping ϕλ taking λ to a function evaluated
in w as follows:3

ϕλ(w) =

∫
f(w + λ

1/2ελ)dP (ελ)

=

∫
f(x+ εx + λ

1/2ελ)dP (ελ). (3)

where εx and ελ are two i.i.d. noise processes, therefore ϕλ(w)
is a regression function obtained from data with “noisier”
inputs, and since we know ελ, we can integrate it out. In
what follows we replace the pair of random variables with
an equivalent random variable ε′ = εx + λ

1/2ελ since the two
are i.i.d. and zero-mean, the variance of the new variable is
var(ε′) = (1 + λ) var(εx), i.e.

ϕλ(w) ∼ f(x+
√

1 + λ εx).

We see that for λ = 0, we have the original function
ϕ0(w) = f(w). In simulation extrapolation the intuition is
that if we could compute ϕ−1(x), this function would provide
the “uncorrupted” labels at x. It is obvious that this intuition
is incorrect – you cannot use negative values for λ – but the
key observation is that we can evaluate ϕλ for any positive λ.
Then, we use extrapolation to obtain the value at λ = −1.

Informally, we can state that in SIMEX we first add ad-
ditional noise to the inputs – with controlled variance – and
observe the effect of the addition on the regression function.
In a subsequent step – having ϕλ for a couple of positive λ-s –
we extrapolate point-wise to ϕ−1(x). For example, we might
use four functions to obtain the SIMEX approximation, also
shown in Figure 1:

ϕ3, ϕ2, ϕ1, ϕ0 → ϕ−1. (4)

For the extrapolation we need a model for the extrapolating
ϕλ as a function of λ. In the original, parametric, SIMEX

3The mapping ϕλ(w) is a function of both λ and w.
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Fig. 1. Illustration of simulation extrapolation. (left) ϕλ for λ = {0, 1, 2, 3}
drawn with thin blue lines; ϕ0 is slightly thicker; ϕ−1 in red, the point-wise
extrapolation. (right) the individual extrapolation ϕλ(w∗) – as a function of
λ – for a test point w∗.

algorithm, the extrapolation is done in the parameter space
[2]. Since we aim for a non-parametric solution, we extrapolate
for every test point w∗ and compute ϕλ(w∗) for a set of λ’s,
followed by the computation of ϕ−1(w∗). The extrapolating
function ϕ(λ,w∗) is important and next we present different
model choices. We choose ϕλ such that it is amenable for
probabilistic approximations, such as GPs.

A. Linear Extrapolation and Hessian–Corrected Models

A first choice for ϕ is a function linear in λ, i.e., ϕ(L)
λ (w) =

γ1(w)+λγ2(w). In this case we show that SIMEX is equivalent
to Hessian–corrected input noise model [1] obtained from a
second order Taylor expansion of f . Using the definition of
ϕλ(w) from Equation (3) and expanding f(·) to the second
order around the test input w∗ we get:

ϕλ(w∗) =

∫
f(w∗ + λ

1/2ελ)dP (ελ)

≈
∫ (

f(w∗) + λ
1/2ε>λ Jf (w∗)+

+
1

2
λελ Hf (w∗) ε>λ

)
dP (ελ)

≈ f(w∗) +
λ

2
tr(ΣHf (w∗)),

where Jf (w∗) and Hf (w∗) are the Jacobian and the Hessian
of f at w∗; Σ is the input noise covariance; tr is the trace
operator, and we used that ελ has zero mean. Therefore, using
the Taylor expansion, we have indeed that ϕλ is linear with
γ1(w) = f(w) and γ2(w) = tr(ΣHf (w)), leading to:

ϕ
(L)
−1 (w∗) = f(w∗)− 1

2
tr(ΣHf (w∗)).

which is the expression of the Hessian–corrected noise mod-
eling proposed by Bócsi and Csató [1]. We think this is
an interesting connection between an approximation-based
approach and a second one that uses an averaging with added
noise.

B. Polynomial Extrapolation

In their setup, Carroll et al. [2] argued that linear functions
are too restrictive for the extrapolation modeling and proposed

two alternatives, the rational to the first order (ϕRλ ) and the
quadratic (ϕQλ ) functions, i.e.,

ϕ
(R)
λ (w) = γ1(w) +

γ2(w)

γ3(w) + λ

ϕ
(Q)
λ (w) = γ1(w) + γ2(w)λ+ γ3(w)λ2,

where the functions γ1(w), γ2(w), and γ3(w) – similarly to
the linear case – are the parameters to the extrapolation. The
discussion in [2] and experimental evaluations point out two
issues: (1) the parameter estimation of ϕRλ becomes unstable
when γ2(w) is close to zero, and (2) higher then second
order polynomials result in inaccurate extrapolation. Thus, we
further limit ourselves to quadratic extrapolation only.

The parameters {γ1(w), γ2(w), γ3(w)} can be estimated
similarly to the previous section, i.e., get three values of
ϕQλ and obtain the analytical expressions of the parameters.
Another possibility is to get more than three values of ϕQλ and
obtain the parameters by minimizing the least square error of
the extrapolation model. The second approach proved to be
a more robust solution, and we have chosen this one in our
experiments.

C. Probabilistic Extrapolation
We assume next that the regression function f(·) – from

Equation (3) – is a GP and the extrapolation function ϕλ is
also a GP (ϕGPλ ) – here as a function of λ. Applying this
assumption to the SIMEX framework from Equation (3), an
integration of a GP posterior is required, and it leads to

ϕGPλ (w∗) ∼
∫
N (µελ(w∗), σελ(w∗)) dP (ε) (5)

µελ(w∗) = kkk>λ (KKKλ + IIIΦ)
−1
yyy

σελ(w∗) = kλ(w∗, w∗)− kkk>λ (KKKλ + IIIΦ)
−1
kkkλ,

where the vector kkkλ ∈ IRN×1 is kkkiλ = k(w∗, wi + λεi), and
the matrix KKKλ ∈ IRN×N is KKKij

λ = k(wi + λεi, wj + λεj),
with k being a positive definite kernel. The integration from
Equation (5) is analytically intractable. However, the point-
wise average of Gaussians has an analytical solution, i.e., the
GP is marginalized relative to input.4

Using the point-wise averaging, we compute ϕGP−1 using a
second GP inference for every test point w∗, this time along
the λ axis: we collect all lambda values into a vector λλλ ∈ IRL,
with L the length of the vector. Then, we use the values of
the Gaussian means and variances as data to this GP from
Equation (5) and the probabilistic prediction is ϕGP−1 (w∗) ∼
N (µ−1(w∗), σ2

−1(w∗)) with

µ−1(w∗) = hhh>(HHH + σ2σ2σ2)
−1
ttt

σ2
−1(w∗) = h(−1,−1)− hhh> (HHH + σ2σ2σ2)

−1
hhh,

where the vector hhh ∈ IRL×1 is hhhi = h(−1,λλλi), the matrix
HHH ∈ IRL×L is HHHij = h(λλλi,λλλj) and h is a positive definite

4Since the operations are point-wise, the consistency of the – Gaussian –
process might be violated.
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Fig. 2. Illustration of probabilistic simulation extrapolation. (left) ϕλ for
different λ values drawn with thin blue lines – variances omitted for clarity;
ϕ−1 in thick red is the point-wise extrapolated posterior mean and the
posterior variance. (right) the individual extrapolation ϕλ(w∗) – as a function
of λ – for a test point w∗.

kernel function. This second kernel h – different from k – is
used for the SIMEX extrapolation only, while k is used in the
function space.

The data for this GP inference are the vector of labels
ttt ∈ IRL×1 as tttλ = µλ(w∗) from Equation (5). The variances
corresponding the these values are put into a diagonal matrix
σ2σ2σ2 ∈ IRL×L with σ2σ2σ2

λλ = σλ
2(w∗) playing the role of the

observation – label – noise at this level. For an illustration of
probabilistic simulation extrapolation see Figure 2.

We conclude with two observations: (1) hhh and HHH are
constants, as they do not depend on the data, but only on
λλλ and the extrapolation kernel h; (2) ϕGP−1 (w) is not a GP, but
is is still a Gaussian for every test point.

IV. EXPERIMENTAL EVALUATION

This section contains the validation of SIMEXGP on both
synthetic data and in a robotic setup for learning the state-
transition dynamics of non-linear systems.

Regarding the implementation a crucial question is how
to perform the integration from Equation (5). Since the in-
tegration is intractable, we approximated it with Monte Carlo
integration. Experiments show that a relatively small number
of evaluations (we used 30–40 samples in our experiments)
are enough to be averaged out even in high dimensional
domains. Another implementation issue is the set of λλλ val-
ues from Equation (4). If not mentioned otherwise, we set
λλλ = [0, 1/2, 1, 3/2, 2, 5/2, 3]. In all the experiments we assumed
that the variance of the input noise is known a-priori.

Another implementational concern is computational effi-
ciency: SIMEXGP requires significantly more computations
than a standard GP, mainly caused by the Monte Carlo
integration and the extrapolation GPs. The positive side is that
most computation can be done parallel that is highly supported
by modern computer architectures. Experiments show that with
proper implementation SIMEXGP is slower than other methods
with only one order of magnitude, therefore we consider it is
worth experimenting with it. We next present an illustrative
example, that gives a visual intuition about the improvement
induced by our method.

A. Illustrative Example
This experiment aims to give an intuition about how

SIMEXGP works and shows the improvement induced by
the method. We generated 1000 training points from the

-0.2
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1
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ϕGP−1

ϕGP0 → ϕGP
5/2

sinc(x/π)

Fig. 3. Results for the sinc(x/π) function with input noise variance Σ = 0.8.
The black dashed curve shows the true sinc(·) function. The blue curves
ϕGP0 → ϕGP5/2

show the posterior GP means when additional noise was
added to the inputs. Note that ϕGP0 corresponds to the GP when only the
original input noise was present. The red curve ϕGP−1 shows the extrapolated
GP.

interval [−12, 12] and added a Gaussian input noise with
variance Σ = 0.8. The training labels were generated using
the sinc(x/π) function. A Gaussian input noise with variance
Φ = 0.1 was also added.

Results are shown on Figure 3. The posterior variance is
not presented since its value was very small caused by the
large number of training points. This phenomena is an inherited
property of GPs. Figure 3 contains the GPs with the artificially
added noise, i.e., ϕGP0 → ϕGP5/2 , where ϕGP0 is the GP when
only the original input noise was present. The red curve ϕGP−1
is the extrapolation of the GP means. The final solution is very
close to the sinc(·) function that we wanted to approximate –
black dashed curve.

B. Synthetic Data
We tested our model on a variety of one dimensional

functions. Results are shown on Figure 4 with the functions
shown above the respective charts5. Figure 4 contains averages
of at least 10 runs.

For each case we generated 800 independently drawn data
points from an interval where the respective function is inter-
esting – the intervals are shown in Figure 4. For the training
sets we added Gaussian input noise with variances Σ = 0.2,
Σ = 0.8, and Σ = 1.5 – every column of Figure 4 corresponds
to one of these three values. An additive Gaussian noise with
variance Φ = 0.1 was also added to the labels.

As a measure of performance we used the mean square
error (MSE) of the learned function on the same interval
where the training data was generated. We performed com-
parison between the following state-of-the-art GP input noise

5Missing columns means that the given method failed to give meaningful
predictions in the respective setup.
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Fig. 5. Illustrations of the (a) car on the hill and (b) inverted pendulum.

modeling methods: (1) Standard GP (GP)[14]; (2) Simulation
extrapolation with quadratic extrapolation function (SGP-Q);
(3) Simulation extrapolation with GP extrapolation (SGP-
GP); (4) Noisy input GP (NIGP) [12]; (5) Most likely het-
eroscedastic GP (MLHGP) [9]; (6) Approximate GP (GPA)
[4]; (7) Hessian corrected GP (GP+H) [1]; (8) Variational
heteroscedastic GP (VHGPR) [10]; We used the MATLAB
implementation of the methods provided by the authors6.

Most of the aforementioned methods do not report signifi-
cant improvement in the mean squared error of posterior mean.
They rather focus on better posterior variance estimations. We
also highlight that we used homoscedastic – constant – noise.
Making comparison with method designed for heteroscedastic
noise, such as, VHGPR and MLHGP, may be unfair. They
are included to obtain a more complete comparison. Another
source of the difference in performance may be that most of the
methods assume unknown input noise variance and its value
is estimated as a parameter. We assume that this variance is
known a-priori.

For all GPs we used a squared exponential kernel with
hyper-parameters obtained using evidence maximization. For
the second GP of VHGPR a linear kernel was used, while for
the second GP of MLHGP we used the squared exponential
kernel.

Results from Figure 4 show that the variance of the input
noise has a significant effect on the improvement induced by
our model. At low variance levels (Σ = 0.2) the improvement
was insignificant, sometimes even leading to slight degradation
of performance. At higher noise levels SIMEXGP outperformed
nearly all of the methods, competing with GP+H. At the highest
noise level (Σ = 1.5), an improvement of 30−60% in the mean
square error was obtained.

C. Learning Dynamics

To test the performance of our methods on higher dimen-
sional data, we chose the problem of learning the short-term
transition dynamics of nonlinear dynamical systems. In this
setting, we model the transition function of the dynamical
system as a GP, where inputs are state-action pairs and the
outputs are the successor states. The state vectors are multi-
dimensional, therefore, for each output dimension d, we train
a separate GP, implying that there is no correlation between
the output dimensions.

6Simulation extrapolation with linear extrapolation function is left out since
it is essentially the same as GP+H.

This problem fits well to the problem of function approxima-
tion with noisy inputs, especially in the robotic control domain,
where information about the robots current state is obtained
from inaccurate sensors. For testing we used two well-known
toy problems from reinforcement learning: the car on hill (a.k.a
park on the hill) and the cart-pole balancing.

1) Experimental setup:: To assess the performance of the
algorithms, we averaged the results of 30 experiments per-
formed on data generated from the dynamical systems. In each
experiment we generated 450 training data-points and 500 test-
points, sampled from trajectories7. The start states were chosen
randomly from the neighborhood of a fixed start-state and
within the state-boundaries of the system. For each sampled
state-action vector, one of the elements of the successor state
was used for each separate GP as a label.

To generate the system inputs, we used a fixed Gaussian
policy with a linear controller of the following form: π(a|s) ∼
N (ctrl(s),ΠΠΠ), where ctrl(s) =

∑d
i=1 αisi is the controller,

αi being the linear coefficients and ΠΠΠ = diag(σ) is the d
dimensional diagonal covariance matrix. The parameters s
and a denote the state and the action of the system. As a
measure of performance we used the average of the prediction
accuracy over the output dimensions. The prediction accuracy
for a given dimension was calculated as the normalized mean
squared error (NMSE) of the corresponding GP. In what
follows, we describe each of the studied dynamical systems
and present the test results where our method is compared to
other state of the art noisy input regression methods mentioned
in Section IV-B and the standard GP regression.

2) Car on hill control problem: A frequently used toy-
problem in reinforcement learning is the Car on hill control
problem [15]. In this setting a car is placed in the middle of a
valley, the goal being to apply a sequence of horizontal forces
such that it climbs out of the valley – see Figure 5.(a) for
illustration. The maximum applicable force is such that the
exit from the valley is only possible by a series of forward
backward movements during which the car gains momentum.

This problem imposes a two dimensional continuous state
space s = [x ẋ] composed of the position of the car x
and its velocity ẋ. The applied action is one dimensional
and continuous. For the approximation of the state-transition
dynamics we used two GPs, each with 3 dimensional inputs
and 1 dimensional output. We added normally distributed input
noise with a range of different variances σ ∈ [0.2, 2.0].

On Figure 6.(a) the bars indicate the normalized mean
squared approximation errors averaged over the two output
dimensions, for all five methods. At this level of input noise
variance σ = 1.8 our method presents a significant improve-
ment over the basic GP and the other noisy input methods.
The same trend can be observed on Figure 6.(b) where the
approximation errors are shown for a range of input variances,
moreover the advantage of SIMEXGP increases with the vari-
ance of the input noise. It can be seen that SIMEXGP produced
the best result consistently over all input noise variance values
while the other methods did not have significant contribution.

7 A trajectory is a set of successive states starting from an initial state and
applying a fixed policy, until a terminal state has been reached.
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(1)(1)(1) GP (2)(2)(2) SGP-Q (3)(3)(3) SGP-GP (4)(4)(4) NIGP (5)(5)(5) MLHGP (6)(6)(6) GPA (7)(7)(7) GP+H (8)(8)(8) VHGPR

f(x) = sinc(x/π)

x ∈ [−12, 12]
(1) (2) (3) (4) (5) (6) (7) (8)

0

0.006

0.012

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.02

0.04

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.1

0.05

f(x) = exp (−x2)

x ∈ [−4, 4]
(1) (2) (3) (4) (5) (6) (7) (8)

0

0.009

0.018

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.06

0.12

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.11

0.22

f(x) = exp(0.2x) sin(x)

x ∈ [−4, 12]
(1) (2) (3) (4) (5) (6) (7) (8)

0

0.004

0.008

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.012

0.024

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.04

0.08

f(x) = 0.2x2 tanh(cos(x/π))

x ∈ [−4, 12]
(1) (2) (3) (4) (5) (6) (7) (8)

0

0.005

0.01

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.01

0.02

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.03

0.06

f(x) = 0.5 log(

x2(sin(2x) + 2) + 1)

x ∈ [−4, 12] (1) (2) (3) (4) (5) (6) (7) (8)
0

0.015

0.030

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.08

0.16

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.11

0.22

f(x) = −x2

x ∈ [−4, 4]
(1) (2) (3) (4) (5) (6) (7) (8)

0

0.04

0.08

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.3

0.6

(1) (2) (3) (4) (5) (6) (7) (8)
0

0.7

1.4

Fig. 4. Results for synthetic data (mean squared error). For each function the three columns correspond to different input noise variance levels: Σ = 0.2,
Σ = 0.8, and Σ = 1.5.

3) Cart-pole balancing: We used the standard version of
the cart-pole balancing problem, which was first introduced in
[15]. A pole is attached with the help of a hinge to a cart that
can move forward or backward in the plain. The goal of the
problem is to control the horizontal force applied to the cart
such that the attached pole stays upright – see Figure 5.(b) for
illustration.

The underlying system has a four dimensional state space
where a state variable s = [x ẋ q q̇] has the following
elements: x the position of the cart, ẋ the velocity of the
cart, q the angle of the pole, and q̇ the angular velocity
of the pole. The input of the system (the action) is one

dimensional, continuous. For the approximation of the system
dynamics we used four GPs where the input vectors were 5
dimensional – dim(states)+dim(actions) – and the output was
one dimensional, representing one of the variables from the
predicted next state. We added normally distributed input noise
with a range of different variances σ ∈ [0.2, 2.6].

In Figure 7 we plotted the evolution of the normalized mean
squared error averaged over the four output dimensions, for
different input noise variances. Although, the improvement
induced by SIMEXGP is not as remarkable as in the previous
experiment, the method is still consistently better over all input
variance values.
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Fig. 6. Results of the car on the hill experiment. (a) Normalized mean squared
error for σ = 1.8 and (b) normalized mean squared error for a range of input
noise variances: σ ∈ [0.2, 2.0].
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Fig. 7. Results of the pole balancing experiment. (a) Normalized mean
squared error for σ = 1.7 and (b) normalized mean squared error for a range
of input noise variances: σ ∈ [0.2, 2.6].

V. CONCLUSIONS

We presented a method that corrects the bias of regression
induced by input noise. SIMEX has been extended to non-
parametric function approximation and applied to GPs result-
ing in a probabilistic inference.

Our experiments show that significant improvement can
be obtained using SIMEXGP. Results on one dimensional
functions suggest that the improvement is proportional to the
variance of input noise.

The main limitation of the proposed method is the require-
ment of knowing the variance of the input noise a-priori. As
future work we aim to alleviate this requirement (at least
partially, e.g., by having multiple measurements of the same
experiment as suggested by Carroll et al. [2]). Another possible
future direction is to make SIMEXGP faster. Faster evaluation
can be obtained by eliminating the Monte Carlo approximation
of the integral from Equation (5) – either we find an analytical
expression or use more efficient approximation methods.

The SIMEX framework allows for changing the additive
noise assumption to other input noise types in a straightforward
way, e.g., we change the addition of noise from Equation (3)
into multiplication. This behavior is also an interesting direc-
tion for research.

We aim to apply SIMEXGP in a real-world robotic setup,
e.g., learning kinematics, inverse kinematics, or reinforcement
learning. Here, where we have to deal with data acquired
from unreliable sensors that fits perfectly the prerequisites of
SIMEXGP.

The authors acknowledge the support of the Romanian
Ministry of Education and Research via grant PN-II-RU-TE-
2011-3-0278.
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