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Abstract. When the inputs of a regression problem are corrupted with
noise, integrating out the noise process leads to biased estimates. We
present a method that corrects the bias caused by the integration. The
correction is proportional to the Hessian of the learned model and to
the variance of the input noise. The method works for arbitrary regres-
sion models, the only requirement is two times differentiability of the
respective model. The conducted experiments suggest that significant
improvement can be gained using the proposed method. Nevertheless,
experiments on high dimensional data highlight the limitations of the
algorithm.

1 Introduction

In regression problems we find the optimal mapping that explains the relation-
ship between an input space and an output space. Along with the class from
where the model is taken, regression methods assume the presence of noise in
the data. Most regression methods assume output noise but neglect the pos-
sibility of the input noise due to analytical intractability or the fact that for
simple linear models the input noise is transferred to the output. In this paper,
we analyse regression methods with input noise assumption.

Input noise modelling is more difficult than modelling output or observational
noise: whilst the output noise is directly observable, the input noise can be
observed only through the input-output transformation that we inferred. In many
cases there are analytically tractable solutions for the output noise model, while
such solutions are extremely rare for the input noise, a notable exception is
the restrictive linear model. Furthermore, even when the input noise can be
integrated out analytically, the solution will be biased. As shown by [1], adding
noise to the inputs can be used for regularization, but for non-zero curvatures,
the estimated output is biased.

Consider for example the parabola in Figure 1, where the red circles on the
horizontal axis are the noisy measurement locations in the neighbourhood of zero
– Gaussian noise is assumed –, the blue stars are the regression values of the
measurements – without output noise for clarity reasons – and the green point
is the result of the Monte Carlo approximation of the integration. It is clear that
after integration the prediction at zero will be always below the true value of
the function, caused by the non-zero curvature of the function, e.g., for concave
functions the averaging over the noisy measurements pulls down the prediction.
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Fig. 1. The bias when estimating with in-
put noise: the predicted value at zero will
always be underestimated

The method proposed in this ar-
ticle improves regression with input
noise by removing the bias induced
by the input noise. We show that the
bias is proportional to the variance
of the noise and to the second order
derivative (Hessian) of the objective
function. The method can be used for
any regression algorithm as long as its
Hessian can be calculated.

1.1 Related Work

Most of the work with input noise has been done for specific models, e.g., Gaus-
sian processes (GP), neural networks (NN), that we discuss later. An exception
is [11] who showed that the regularization with input noise [1] is equivalent to
adding the L2 norm of the Hesse matrix of the objective function. Our method
is based on this insight with reversed goals, i.e., we do not want more regular-
ized models but better accuracy. In the GP framework a general idea is to use a
second GP to model the input noise process. Posteriors have been obtained via
Monte Carlo integration [6], variational learning [8], or EM-based methods [7].
Another approach is to use the Taylor expansion of the GP [5] and analytically
compute the posterior (e.g., for squared exponential kernels) [2]. The integration
of the input noise is intractable for NNs as well. To approximate the posterior,
[12] integrated over the uncertain input with a maximum likelihood estimation,
while [13] used Laplace approximation and Monte Carlo simulation to improve
on the prediction.

The above approaches do not report improvement in the accuracy of the
prediction, they focus instead on improved posterior variance estimates. Fur-
thermore, most of them were applied for one dimensional problems, with only a
few being used on real world data-sets with multidimensional inputs, e.g., [2,9,8].
We apply our method for both artificial problems and real-world data-sets.

2 Input Noise Correction

Let us be given a data-set D = {(xi, yi)}Ni=1, with inputs xi ∈ Rd and labels
yi ∈ R. A general assumption is that the labels are corrupted with additive
Gaussian noise, and we also assume that the inputs are also corrupted, i.e.,

y = ỹ + εy x = x̃+ εx,

where y is the observed label, ỹ is the true label, and εy ∼ N (0, σ2
y) is a noise

process; x is the observed input, x̃ is the true input, and εx ∼ N (0,Σ) is the
additive Gaussian input noise. We assume that the inputs are uncorrelated, i.e.,
Σ is a diagonal covariance matrix with σ2

i on the diagonal and σ denotes the



Hessian Corrected Input Noise Models 3

vector of individual variances. If we denote with f(·) the true data generating

function, with p(εx) the distribution of the input noise, and with f̂(·) the function
after integrating out the input noise, the relation between them is

f̂(x̃) =

∫
f(x̃+ εx) dp(εx), (1)

The estimate f̂(·) is biased even when the true generating function f(·) is known
[12]. We propose to use the second order Taylor expansion of f(·) around the
true input location x̃, with the averaging as

f̂(x̃) =

∫ (
f(x̃) + ε�x Jf (x̃) +

1

2
ε�x Hf (x̃)εx + . . .

)
dp(εx), (2)

where Jf (x) and Hf (x) are the Jacobian and the Hessian of f(x). The first
term does not depend on the noise; the Jacobian term vanishes since εx is has
zero mean; and the third term can be written as ε�x Hf (x̃)εx = tr(Hf (x̃) εxε

�
x ),

leading to the following simplified expression:

f̂(x̃) � f(x̃) +
1

2
σ�Hf (x̃)σ � f(x) +

1

2
σ�Hf (x)σ, (3)

The true input location x̃ is unknown; we approximate it with the noisy location
x, i.e. f(x) = f(x̃) and Hf (x) = Hf (x̃). A similar assumption has been made
by [9] in the context of input noise GPs.

We consider two steps in approximating f̂(x̃): we first construct a function
g(·) based on D without the input noise assumption. In this first step we do not
make specific assumptions about the function, we assume that it can be arbitrary.
From Equation (3) follows that g(·) and the true data generating function f(·)
are related as follows:

g(x) = f(x) +
1

2
σ�Hf (x)σ. (4)

The second step is obtaining f(·) when g(·) and σ are known, i.e., solving the
partial differential equation from Equation (4). This equation does not have an
analytical solution [3] since it requires an integration over g(x) that is intractable
in most cases. A possible solution is to use numerical methods but these methods
time consuming and become unstable when noise is present. A more significant
drawback is the lack of good initial conditions for the differential equation. Note
that the initial conditions must contain both the values and the derivatives of the
function f(·) [3]. We tried the following approximations for the initial conditions

f(x) = g(x), Jf (x) = Jg(x) or f(xj) = yj, Jf (xj) = Jg(xj),

where (xj , yj) ∈ D but our experiments show that pure results can be obtained
based on these approximations. Next, we make further assumptions about f(·)
to approximate the solution of the partial differential equation (4).
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(a) Example for f(x) = sinc(x).
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(b) Curvature of the prediction.

Fig. 2. (a) Approximating with 800 training points and input noise with standard
deviation σ = 0.8 the standard GP (red) under- and overestimates the true prediction
(black) where the curvature is high. Our GP model corrected with the Hessian (green)
results in more accurate prediction. (b) The curvature of the predicted function tends
to zero exponentially when the dimension of the inputs increases.

2.1 Quadratic Approximation of the Partial Differential Equation

We approximate f(·) with a quadratic function at every input location x, i.e.
we assume that f(x) = x�Axx + x�b + c with its Hessian Hf (x) = 2Ax.
This is again similar to the approximation based on the Taylor series expansion
from Equation (2), and we assume that the expansion is at the current point of
interest x.

We substitute the local approximation into Equation (4), differentiate it two
times and obtain

Hg(x) = 2Ax. (5)

i.e. under the locally quadratic approximation of f(·), the Hessian of f(x) and
g(x) must be equal. Therefore, we can replace Hf (x) with Hg(x) from Equa-
tion (4), and obtain the following expression for f(x)

f(x) = g(x)− 1

2
σ�Hg(x)σ (6)

On the right side of Equation (6) every term is known, thus f(x) has an analytic
form. The interpretation of Equation (6) is the following: when dealing with
data corrupted with input noise, any regression model g(·) can be improved by
subtracting the Hessian of the model Hg(·) multiplied by the noise variance.
An other interpretation of the result in Equation (6) is that if we relax our
assumptions about the model, then we might replace the second derivatives of
the true function from Equation (4) with the approximating function g(·) and
this approximation is pursued in the rest of the paper.
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3 Experiments

We conducted experiments to see how well the proposed method performs under
different conditions. We were interested how well it scales with the number of the
training examples, with the variance of the input noise, and with the dimension of
the input space. We did not compare the proposed method with the state-of-the-
art input noise models since the authors do not report significant improvement
on the accuracy of the prediction, rather they enhance the posterior variance
that is not desired in our framework.

3.1 Illustration for the Sinc(x) Function

We applied the proposed method on a toy example, to give an insight about
the induced improvement. For training inputs we generated 800 points on the
[−12, 12] interval corrupted with additive Gaussian noise with standard devia-
tion σ = 0.8. For training labels we transformed these point with the sinc(·)
function and added a Gaussian noise with standard deviation σy = 0.1 as out-
put noise. We used standard GPs to obtain prediction and also used the Hessian
corrected version (GP+H). Results are shown on Figure 2a. It can be seen that
the standard GP under- or overestimates the true sinc(·) function where the
curvature of the function is high. On the other hand, the Hessian corrected GP
results in an almost perfect prediction. Note that when the variance of the input
noise is not known, we can under- or over- correct the model using wrong values.

3.2 Synthetic Data

We generated synthetic data for different one dimensional functions, with results
in Figures 3. We used GPs and NNs for the regression models to learn these
functions and compared the accuracy with the Hessian corrected versions of the
respective methods (referred as GP+H and NN+H). The hyper-parameters of
the GP were obtained with evidence maximization while the parameters of the
NN were obtained using back-propagation.

For every function we investigated (1) how the improvement of the input noise
correction scales with increasing the standard deviation of the input noise, and
(2) how the improvement of the input noise correction scales with increasing the
number of the training examples with a fixed standard deviation. As a measure
of performance we used the mean square error (MSE) of the learned function on
the same interval where the training data was generated.

For the first type of experiments (first and third columns of Figures 3) we
generated 200 points from the interval [−4, 12] (or with the intersection where
the respective function was defined) and added a Gaussian output noise with
standard deviation σy = 0.1. The standard deviation of the input noise was
between 0.1 and 1.2. For the second type of experiments (second and fourth
columns of Figures 3) we generated points from the same interval as before,
added a Gaussian input noise with standard deviation σ = 0.8, and also added
Gaussian output noise with standard deviation σy = 0.1. The number of the
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f(x) = sinc(x/π) f(x) = exp
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f(x) = x f(x) = 0.2x2 tanh(cos(x/π))
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f(x) = 0.5 log(x2(sin(2x) + 2) + 1) f(x) = exp {−0.2x} sin(x/π)
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Fig. 3. Performance on artificial data: the left-side shows the evolution of the mean-
square error when increasing gradually the input noise level. Plots on the right side
show the errors when the size of the available data increases.

training points was between 20 and 1200 and all the shown results are averages
over 200 runs.

Synthesizing plots of the algorithm, in Figure 3, show that the Hessian cor-
rected version are almost always better than the standard GP or NN or at least
it is very close. There is one exception: the linear function from Figure 3.(c),
where the Hessian corrected version is significantly worse. The explanation is
that the true Hessian of a linear model is zero. Thus, small inaccuracies in the
standard regression model lead to non-zero Hessian, and therefore the prediction
will deteriorate.

The general trend with increasing the noise level is that as the standard
deviation of the input noise increases, the improvement induced by the Hessian
corrected methods is more significant.

Another important conclusion is that as the number of the training examples
grows, the MSE of the Hessian corrected estimation decreases (an exception is
again the linear function), thus, it is consistent in the sense that it converges to
the best model that the chosen function space contains.
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Table 1. Results of experiments on real world data-sets (performance measured in
MSE). Boston housing ($1000s); Concrete (mega-pascal); Barrett WAM (millimetres);
CPU performance (benchmark points); Auto MPG (miles per gallon).

Data-set name GP GP+H NN NN+H Noise (σ) Dim. Set size

Boston housing ($1000s) 2.2271 2.2271 3.4819 3.4819 0.1 13 506

Concrete (MPa) 4.1281 4.1280 6.1865 6.1864 1 8 1030

Barrett WAM 1 (mm) 2.9272 2.9242 2.8726 2.8488 0.01 4 1000

Barrett WAM 2 (mm) 13.707 13.731 12.439 9.3524 0.1 4 1000

CPU performance 17.762 17.763 16.846 16.846 5 7 209

Auto MPG (mpg) 4.0301 4.0322 2.2990 2.2988 3 7 301

3.3 Real World Data-Sets

When trying the method for real data, we were interested in how significant the
Hessian corrected improvement is on higher-dimensional data where there is no
control over the noise of the function to be predicted either. The data-sets were
gathered from different domains with different features (input dimension, train-
ing set size) – Table 1 summarizes the data-sets. We used the (1) Boston housing
data-set [4] that concerns housing values in suburbs of Boston; (2) Concrete data-
set [14] that collected the compressive strength of the concrete; (3) Barrett whole
arm manipulator (WAM) data-set [10] that was generated by us on a simulated
Barrett WAM robot architecture while we learned the forward kinematics of
the robot arm [10]; (4) CPU performance data-set [4] that deals with the CPU
performance; (5) Auto MPG data-set [4] that collected fuel consumption of cars.

Results from Table 1 show the standard deviation of the input noise, the
dimension of the data-set, and the size of the data-set as well. The values were
obtained with 10-fold cross validation and are averages over 100 runs.

The improvement of the Hessian corrected methods is insignificant but it
is generally not worse. We believe that the explanation is the same as it was
for the linear functions in the previous section. In high dimensions we prefer
rather linear models (e.g., as a result of regularization) to avoid over-fitting. In
theory we prefer models with Hessians close to zero. Thus, the addition of the
approximated Hessian does not improve the prediction.

To illustrate this effect of high dimensional data on the Hesse matrix, we
experimented on a toy example. We approximated a d dimensional parabola
f(x) =

∑d
i=1 x

2
i using a GP. We generated 100 points uniformly distributed on

the interval [−2, 2]d and did not add any noise. Figure 2b shows that the curva-
ture of the prediction function tends to zero exponentially when the dimension
of the inputs increases. Note that this phenomena is independent of any of our
assumptions, it is rather a property of high dimensional data modeling.

4 Discussion

When the inputs of a data-set are corrupted with noise, integrating out the noise
process leads to biased estimates. We presented a method that corrects this bias.
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The correction is proportional to the Hessian of the learned model and to the
variance of the input noise. The method works for arbitrary regression models.

The proposed method has limitations: it does not improve prediction for high-
dimensional problems, where the data are implicitly scarce. This is due to the
fact that the estimated Hessian is considerably flattened, leading to no significant
contribution to the overall output. To wisely choose when the Hessian correction
can be used with success, these limitations have to be taken into account.

An interesting further research direction is to further analyse our algorithm
specialised for the robotic Barrett WAM data. We believe that there are potential
improvement capabilities since the size of the data-set is large, the dimensionality
of the problem is reduced, and there is a real need for better approximation
methods. One could – for example – start from the approximation to the second
order PDE from Equation (6) and try to provide still approximating solutions
that would probably be more precise than the simple replacement of the true
function with its approximated based on noiseless inputs.

The authors acknowledge the support of the Romanian Ministry of Education,
grant PN-II-RU-TE-2011-3-0278.
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