
Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Architectural Patterns

Lect. PhD. Arthur Molnar

Babes-Bolyai University

arthur@cs.ubbcluj.ro



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Overview

1 Architectural Patterns
Intro
Model View Controller
Model View Presenter
Model View View-Model



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Intro

Architectural patterns are higher-level than those
previously discussed

They are about making the code:

Scalable, maintainable
Enable adding new features quickly
Help avoid spaghetti code, or ”crossing the streams”
Easier to testing using mock objects



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Controller

Divide the application into three interconnected parts

Separates the information from the way it is handled, and
the way it is presented

Popular in using both GUI and web applications



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Controller

Figure: https://en.wikipedia.org/wiki/Model%E2%80%93view%
E2%80%93controller

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Controller

Model

Central component of the pattern

It carries the data, manages the logic

POJO implementation

View

Representation of the information (GUI, table, chart, etc.)

The same model can have several different representations
(views)

Controller

Accepts user input, controls the data flow

Commands both the view and the model



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Controller

The Model stores data that is retrieved according to
commands from the Controller and displayed in the View

The View generates new output to the User based on
changes in the Model.

The Controller can send commands to the Model to
update its state (e.g. editing a document).

Controller can also send commands to its associated View
to change the presentation of the Model (e.g. scrolling
through a document, movement of document)



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Controller

+ Promote simultaneous development

+ High cohesion

Enables logical grouping of related controller actions
together
Views for a given model are also grouped together

+ Low coupling

+ Ease of modification, due to separated responsibilities
(easier to enforce the single responsibility principle)



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Controller

– Code navigability can be made complex given new
abstraction layers and the decomposition criteria of MVC

– Multi-artefact consistency, as feature decomposition can
lead to scattering

– Learning curve, as in some cases multiple technologies
might be required (e.g. Model 2)



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Controller

MVC source code

git:/examples/architecture/mvc

MVC source code

git:/examples/architecture/mvc/swing



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

A variation of model-view-controller

Figure: from https://medium.com/cr8resume/

make-you-hand-dirty-with-mvp-model-view-presenter-eab5b5c16e42

https://medium.com/cr8resume/make-you-hand-dirty-with-mvp-model-view-presenter-eab5b5c16e42
https://medium.com/cr8resume/make-you-hand-dirty-with-mvp-model-view-presenter-eab5b5c16e42


Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

When compared with MVC

(Usually) passive View, which renders the UI and routes
user input

The Presenter acts as both-ways intermediary between
View and Model

Handles user event
Retrieves data from models
Formats it for display in view

Each View generally has its own Presenter

Model is actually an entity that includes business logic
and which can update the ”proper” model itself



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

A (kind of) sequence diagram

Figure: from https://github.com/rahulabrol/Messanger

https://github.com/rahulabrol/Messanger


Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

Model

Holds data that will be used by view

Collection of classes that represent the business model and
process it

View

Has a reference to Presenter and asks it to do work

Decoupled from the Model



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

Presenter

Coordinates events between the View and Model

Responds to view requests, updates the view



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

Testing - MVP should make testing easier than MVC

View - test rendering logic and interaction with Presenter
(which can be mocked)

Presenter - test that the view invokes the correct model
method (mock both Model and View)

Model - test the business logic, mock the data source and
Presenter



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

+ Complex tasks are divided into smaller tasks

+ Less complicated objects, fewer bugs, easier debugging

+ Easier to test

– Boilerplate code to wire the layers

– Model cannot be reused and is tied to specific use cases

– View and Presenter are tied to data objects since they
share the same type of object with the Model



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View Presenter

Example

git:/examples/architecture/mvp



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View View-Model

Figure: from https://en.wikipedia.org/wiki/Model%E2%80%

93view%E2%80%93viewmodel

Separate development of the GUI (using source code or a
markup language - XAML) from its back-end and business
logic
Invented by Microsoft architects to simplify GUI
event-driven development
Developed to take advantage of the data-binding
mechanisms in WPF by removing GUI-code from the view
itself

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel


Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View View-Model

Allows late-breaking changes to the user interface
(component layout, dimensions, presentations) without
affecting application code

The View is the only component that is platform-specific

The ViewModel acts as a value converter between data
model objects and GUI components

ViewModel can act as a mediator between GUI
components and its back-end



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View View-Model

The Model

Can be the domain model itself, or the data access layer
that represents content

No references should appear to either View or ViewModel

The View

Platform-specific code for the user interface

May not reference the Model

Bidirectional binding to ViewModel

Communication to ViewModel is represented by
Commands from the View to the ViewModel
Communication from ViewModel is represented via the
data binding and the update of the data from the
ViewModel



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View View-Model

The ViewModel

Abstraction of the View exposing public properties and
commands to facilitate communication between View and
Model

References the Model, might reference the View

Abstraction of View’s code-behind, reusable code when
modifying the View



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View View-Model

View - ViewModel: communication is called Data
Binding (bidirectional)

ViewModel - Model: communication is done via
Notifications (bidirectional)



Lecture 05

Lect. PhD.
Arthur Molnar

Architectural
Patterns

Intro

Model View
Controller

Model View
Presenter

Model View
View-Model

Model View View-Model

+ Reduce the amount of code-behind and dependency
between it and view-specific code

+ Model does not change to support a View

+ Separate designers from coders by separating GUI code
from code-behind, reducing development time

– Create more files

– Simple tasks can be more complicated

– Lack of standardization, most specific to Windows
Presentation Foundation (WPF)


	Architectural Patterns
	Intro
	Model View Controller
	Model View Presenter
	Model View View-Model


