
Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Behavioural Patterns

Lect. PhD. Arthur Molnar

Babes-Bolyai University

arthur@cs.ubbcluj.ro



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Overview

1 Behavioural Patterns
Intro
Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor
Discussion of Behavioural Patterns



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Intro

Concerned with algorithms

How the responsibility is assigned to objects

Provides ways for objects to fulfill requirements while
loosely coupled



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Chain of Responsibility

Chain of Responsibility pattern

Avoid coupling the request sender with the receiver(s).

Request sender does not know about the receivers

Receivers can be chained, with the first compatible one
handling the request



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Chain of Responsibility

Motivating example: context-sensitive help within a GUI
application

GUI’s are defined hierarchically, with each component
having a parent

Each component might handle a help request by providing
a help handler

In case a component does not provide context-based help,
its parent should do it



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Chain of Responsibility

The widget where help request is issued (e.g. a button)
does not know who exactly will provide it

Each object must share a common interface for handling
help requests (e.g. a HelpHandler)

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Chain of Responsibility

The HelpHandler implements support for the responsibility
chain pattern

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Chain of Responsibility

Figure: General case, from [1]

Using the chain of responsibility

+ Decouple the handler(s) from the message source

+ Provide the handler(s) dynamically

– No guarantee that a request will be handled



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Chain of Responsibility

Logger example source code

git:
/src/ubb/dp/behavioural/ChainOfResponsibilityLogger.java

Computer example source code

git: /src/ubb/dp/structural/CompositeExample.java



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Command

Command pattern

Encapsulate a request as an object.

Allows issuing request without knowing the operation or
the receiver(s)

The request can be passed around between application
systems, as it is encoded within an object

The key is an abstract Command class that declares an
interface for executing operations

Great for implementing undo/redo ,



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Command

Motivating example - a menu-based GUI

Each choice in the menu is a MenuItem (e.g. similar to
Java Swing)

When clicked, each menu item runs the execute() method
of its command object

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Command

Motivating example - undo/redo

Some operations are simple (e.g. delete a rental car that
has no rental history)
Some operations are compounded (e.g. if you delete a
rental car, you must also clear its rental history; when
undoing this, you have to restore the full state)

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Command

Figure: General case, from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Command

When and how to ... command

The pattern allows changing request dynamically, as well
as reusing them (e.g. a menu item and button might
share a command)

Specify and queue operations for later execution

In many cases implemented using callbacks

Commands are first-class objects (?)

Decoupling concrete commands from issuers and receivers
makes it easy to create new ones



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Command

Command example source code

git: /src/ubb/dp/behavioural/command

Command classes are implemented in UndoController

Command objects are created by the Controller classes
(except the Undo Controller)

Run the example using the modules CommandExample*



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Command

Command example source code

git: /src/ubb/dp/behavioural/memento

Command classes are implemented in package
/commands

Used as part of the undo/redo mechanism



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

Iterator pattern

Provide a way to access the elements of an aggregate
sequentially without exposing its representation.

You need a way to traverse an aggregate (e.g. list, tree,
GUI widget structure)

Separate the interface for accessing elements from the
aggregate itself (avoid interface pollution)

Might want to traverse the elements in different ways
(e.g. preorder, start-end, end-start)



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

Figure: List iterator, from [1]

Iterator must be supplied with the aggregate to traverse

Some of these operations can be unified (e.g. have only
next(), hasNext())

Separation between aggregate and iterator allows using
several iterators over the same structure at once

The aggregate and its iterator are coupled



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

Figure: List iterator, from [1]

Polymorphic iteration

Concrete iterator can be obtained directly from the
aggregate itself, using a factory method



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

Consequences:

Iterators allow you to implement different traversals

They simplify the interface of the aggregate

You can have multiple traversals at the same time

Figure: From the Interwebs



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

Internal iterator

Controlled by the iterator itself

Client provides the operation to perform, iterator handles it

External iterator

Controlled by the client

More flexible

The one you know ,



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

Implementation details:

Iterator robustness - what happens if you modify the
aggregate during iteration? (creating a copy of the
aggregate must be avoided)

Aggregate might have to share state with its iterators,
breaking encapsulation (e.g. C++ friend classes)

NullIterator - one that has always finished the iteration



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

Java

Java 5 introduced the Iterable interface, which the
Collection interface extends

Python

Prescribes iterator sequence as part of the language

We have iter , next() and StopIteration



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Iterator

NullIterator source code

git: /src/ubb/dp/structural/CompositeExample.java, the
SimpleEquipment is a leaf node in the composite and returns a
NullIterator

Java Iterator source code

git: /src/ubb/dp/structural/CompositeExample.java, check
the iteration when computing the desktop’s total power
consumption and price

Python Iterator source code

git: /src/ubb/dp/behavioural/IteratorExample.py, an iterator
built for a List adapter wannabe ,



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Mediator

Mediator pattern

Define an object that encapsulates how a set of objects
interact.

Promotes low coupling, as objects do not refer each other
directly

You can vary their interaction using the mediator (or by
implementing another mediator type)

Partitioning a system into interacting objects improves
software characteristics (e.g. reusability, understandability,
maintainability)

Having many interconnections reduces these desirable
characteristics



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Mediator

Provides a centralized location for these widgets to
interact while loosely coupled

Figure: from http://www.java2s.com/Code/Java/

Design-Pattern/MediatorPattern2.htm

http://www.java2s.com/Code/Java/Design-Pattern/MediatorPattern2.htm
http://www.java2s.com/Code/Java/Design-Pattern/MediatorPattern2.htm


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Mediator

The FontDialogDirector object acts as the mediator between
the widget objects

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Mediator

Figure: from [1]

List box tells the director it’s changed

Director gets the selection from the list box and passes it
to entry field

Director enables corresponding buttons



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Mediator

Figure: from [1]

Mediator defines the interface for communicating

ConcreteMediator implements the behavior

Colleague classes communicate with the mediator



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Mediator

When to use Mediator

A set of objects communicate in well-defined but complex
ways

A behaviour distributed between classes should be
customized without subclassing

Consequences

It limits subclassing, by grouping behaviour into a class

Simplifies communication protocols between objects

Abstracts and centralizes control

Mediator and Observer are related



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Mediator

Mediator source code

git:/src/ubb/dp/behavioural/MediatorExample.java



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Memento

Memento pattern

Without violating encapsulation, capture and externalize an
object’s internal state, so that the object can be restored to it
later.

Useful for implementing checkpoints, rollback, undo/redo
,

Solves the issue of externalizing state without breaking
object encapsulation



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Memento

Motivating example - a system for unlimited undo/redo

We want to undo/redo moving shapes in a graphical editor

Each operation is modelled as an instance of the
Command pattern

Each operation must keep the state that needs to be
restored, a Memento

The memento object stores the internal state of an
originator

The state of requested from / restored to the originator
when needed



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Memento

How it works

At each operation, the Editor creates a Memento object
and adds it to the history

At undo or redo, the state is restored from history



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Memento

In the general case...

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Memento

In the general case...

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Memento

Consequences...

+ Preserves encapsulation boundaries

+ Simplifies the originator, as it no longer has to
”remember” its state

– Using them might be expensive

– Hidden costs for maintaining, especially in non-GC
languages



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Memento

Memento source code

git:/src/ubb/dp/behavioural/memento



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Observer

Observer pattern

Define a one-to-many dependency between objects so that
when one object changes state, all dependents are notified.

Solves the problem of maintaining consistency between
objects (problem is similar to Mediator)

Key roles are the subject (Observable) and the observer

One subject can have many observers, and one object can
observe several subjects

Implements the publish-subscribe interaction



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Observer

When to use observer pattern

Need to encapsulate an abstraction in several objects that
depend on each other

One change requires other changes, but in a flexible way

The publisher notifies its subscribers, but it does not know
exactly who or how many these subscribers are



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Observer

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Observer

Subject notifies its observers when a change occurs

Observers might further query the subject after being
notified

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Observer

Consequences

+ Main idea is that subjects and observers can vary
independently

+ Supports broadcast communication (where senders do not
have knowledge of receivers)

– Observers can change the subject in a matter that results
in a lot of further updates



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Observer

Implementation details

Observers can track more than one subject, raising the
issue that notifications must provide information about the
originator (e.g. Java’s ActionEvent.getSource())

Dangling references to subjects in non-GC languages!

Push (subjects sends a lot of info to subscribers) versus
pull (subscribers further query the subject)
implementations

Subjects can provide finer-grained control regarding the
actions subscribers are interested in (e.g. our code
example)



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Observer

Observer source code

MouseAdapter example git:/src/ubb/dp/behavioural/memento

Observer source code

git:/src/ubb/dp/behavioural/observer



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

State

State pattern

Allow an object to alter its behavior when its internal state
changes. The object appears to change its class.

Motivating example

A TCPConnection class that manages a TCP network
connection

Connection can be in one of several states: established,
listening, closed

When the connection object receives requests, it responds
differently depending on current state.

Behaviour depends on the current state, represented using
an abstract base class (ABC).



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

State

Figure: from [1]

When the state changes, the TCPConnection instance
changes the state object used



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

State

When to use the state pattern...

An object’s behaviour depends on its state, which changes
at run-time

Can be used to replace large conditional statements
modeling behaviour

General structure...

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

State

Consequences

+ Localizes state-specific behaviour and partitions it for
different states

+ Makes state transitions explicit (changes object type),
instead of implicit (change in object internal state)

+ State objects can be shared (using the Flyweight pattern)

– Increases the number of classes, solution is less compact



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

State

Implementation

Who is responsible for defining state transitions?

Context leads to centralization
State means that state classes know about each other,
but new states could be easily added



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

State

State source code

git:/src/ubb/dp/behavioural/state



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Strategy

Strategy pattern

Define a family of algorithms, encapsulate them, and make
them interchangeable.

Strategy allows algorithms to vary independently from the
clients using them

Figure: No strategy leads to complicated code that is difficult to
maintain



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Strategy

Motivating example1

Implement a navigation app
You can navigate between two points using a car, public
transportation, or on foot
Different strategy required for optimal path calculation in
every case

Figure: https://refactoring.guru/design-patterns/strategy

1https://refactoring.guru/design-patterns/strategy

https://refactoring.guru/design-patterns/strategy


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Strategy

+ Use strategy when several object must differ only in
behaviour

+ Avoid exposing complex implementation details

+ Avoid complicated conditional statements

Figure: from [1]



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Strategy

Conseqences

Used to define a family of related algorithms

You can implement strategies via subclassing too, but that
hardwires the implementation into the class (remember
class vs. object patterns); you also cannot vary the
implementation dynamically

Clients have to be aware of differences between strategies
(context must be aware of another class’s implementation)



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Strategy

Strategy source code

git:/src/ubb/dp/behavioural/StrategyExample.java



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

Template method

Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses.

Motivating example:2

Create an application that analyzes all kinds of documents

At first, you only support .doc files

Later, you also add support for other file types (e.g. .pdf,
.csv, .whatever)

2https://refactoring.guru/design-patterns/template-method



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

Figure: from https:

//refactoring.guru/design-patterns/template-method

https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

Most algorithm steps are common across file types

The extract... and parse... methods are particular to the
document format

We template them - provide an abstract implementation
that subclasses override



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

Figure: from https:

//refactoring.guru/design-patterns/template-method

https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

When to use

Implement invariant parts of an algorithm

Separate differences between algorithms into new classes,
and avoid code duplication

Allow extensions to your code



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

Figure: General case (from https:

//refactoring.guru/design-patterns/template-method)

https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

Consequences

Templates methods are fundamental for code reuse

Lead to the Hollywood principle3

Similarities

With Factory method pattern

With Strategy pattern

3”Don’t call us, we’ll call you” ,



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Template Method

Template Method source code

git:/src/ubb/dp/behavioural/template



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Visitor pattern

Represent an operation to be performed on the elements of a
structure. Define a new operation without changing the
elements it operates on.



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Motivating example4

Develop an app that works with geographical data

You create a large graph of available objectives

At some point, you need the graph saved to XML

Figure: General case (from
https://refactoring.guru/design-patterns/visitor)

4from https://refactoring.guru/design-patterns/visitor

https://refactoring.guru/design-patterns/visitor
https://refactoring.guru/design-patterns/visitor


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Motivating example - add a saveToXML() method to all
node types

– Nodes model business entities, and have nothing to do
with XML

– Limited access to node classes

– What is you also need saveToJSON()?

Figure: General case (from
https://refactoring.guru/design-patterns/visitor)

https://refactoring.guru/design-patterns/visitor


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Proposed solution

Group the functionality into a new, visitor class

Separate the data structure from the algorithm processing
it

Results in two hierarchies - one for the elements being
operated on, and one for the visitors

Elements only need a new operation to accept(Visitor v) a
visitor, regardless of its type

When to use

Perform the same operation on many different types

Operations to carry out change more frequently than the
structure elements



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Figure: General case (from
https://refactoring.guru/design-patterns/visitor)

https://refactoring.guru/design-patterns/visitor


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Consequences

Related behaviour is grouped in the visitor class (single
responsibility principle)

Implementing new behaviour is easy (open for extension)

Element classes are not polluted with operations

Adding new elements is difficult, as we have to update the
visitors

Elements must expose enough info to allow visitors to do
their job without breaking encapsulation



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Related patterns

In many cases visitors are used to apply an operation over
a composite structure

An iterator (internal or external) can be used to visit each
element in the structure



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Figure: https://refactoring.guru/design-patterns/visitor

Visitor source code

git:/src/ubb/dp/behavioural/visitor

https://refactoring.guru/design-patterns/visitor


Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Visitor

Exercise

Implement a visitor-based price and power calculation for the
computer assembled in the Composite example



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Discussion of Behavioural Patterns

Encapsulate Variation - describe aspects that are likely to
change

Strategy encapsulates an algorithm

State encapsulates a behaviour that depends on a small
number of states

Mediator encapsulates the communication between other
objects

Iterator encapsulates the traversal of a data structure



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Discussion of Behavioural Patterns

Objects as arguments

Visitor receives as argument the currently visited object

Command encapsulates an operation to carry out in the
future as an object

Memento uses an object to ”remember” an object state



Lecture 04

Lect. PhD.
Arthur Molnar

Behavioural
Patterns

Intro

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Template
Method

Visitor

Discussion of
Behavioural
Patterns

Discussion of Behavioural Patterns

Decoupling Senders and Receivers

Observer distributes communication between a Subject
and its Observers

Mediator encapsulates the communication - less flexible,
tightly encapsulated, easier to comprehend


	Behavioural Patterns
	Intro
	Chain of Responsibility
	Command
	Iterator
	Mediator
	Memento
	Observer
	State
	Strategy
	Template Method
	Visitor
	Discussion of Behavioural Patterns


