
Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Structural Patterns

Lect. PhD. Arthur Molnar

Babes-Bolyai University

arthur@cs.ubbcluj.ro



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Overview

1 Structural Patterns
Intro
Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Intro

Concerned with how classes are composed to form larger
structures.

We have class patterns (inheritance), and object patterns
(composition)

Many of these patterns are related, and some of them we
can find in others (hence their ordering)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

What is an adapter? (non CS explanation)

Why do we need them?

Adapter allows classes with incompatible interfaces to
work together (without source code changes)

Adapter pattern

Convert the interface of a class into another interface expected
by clients.



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

Motivating example:

Let’s consider a drawing editor for lines, polygons, ...

The editor works with a Shape abstract base class

Concrete elements subclass Shape (e.g. LineShape,
RectShape, etc)

TextShape is more interesting, as its implementation is
more difficult

Luckily (!), we’ve got a GUI library providing a TextView
class - it’s just what we need, but Shape and TextView
don’t know each other



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

What to do, what to do?

1 Change TextView to conform to Shape? (why, why not?)

2 Introduce an adapter between the seemingly unrelated
classes - enter TextShape



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

Figure: From[1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

1 BoundingBox() messages are converted to GetExtent()

2 CreateManipulator() converted to the new
TextManipulator() implementation

3 The difficulty in designing the adapter depends on the
level of mismatch between target and adaptee



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

Two possible implementations - class adapter

Figure: From[1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

Two possible implementations - object adapter

Figure: From[1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

1 Clients call the Adapter, and it calls Adaptee operations in
turn

2 Class adapters commit to a concrete Adaptee class, less
flexibility when we want to adapt Adaptee subclasses

3 Your mileage may vary based on difference between Target
and Adaptee

4 Two-way adapters can be created, making both Target
and Adaptee work with each other



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter

1 Pluggable adapters incorporates interface adaptation
(more details in [1])

Figure: From [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Adapter example code

Source code

git: /src/ubb/dp/structural/Adapter



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Bridge

When an abstraction can have multiple implementations,
we usually use inheritance, using interfaces or abstract
base classes

Inheritance glues abstraction and implementation together



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Bridge

Motivating example:

Implementation of a Window abstraction for a GUI toolkit
We want it to work on multiple platforms (e.g. X Window
System and IBM Presentation Manager)
Define abstract Window class and subclass it:

Results in XWindow and PMWindow
Classes that extend Window have to be implemented in
both frameworks
Client code is platform dependent

Figure: From [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Bridge

Figure: From [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Bridge

Bridge separates the abstraction and its implementation
into separate class hierarchies

We have a WindowImp class as a platform agnostic root
class

Window subclass operations are implemented in terms of
abstract operations in WindowImp.

The bridge exists between Window and WindowImp, and
it is between abstraction and implementation



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Bridge

General case:

Figure: From [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Bridge

When and how to use:

Decouple interface and implementations; this allows you to
vary the implementation at run-time (e.g. use Swing,
JavaFX or SWT windows)

A proliferation of classes, such as in the first example

Decision about which implementation to use can be taken
using a Factory approach in the Window class constructor



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Bridge example code

Source code

git: /src/ubb/dp/structural/Bridge



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite

Composite pattern

Compose objects into tree structures to represent part-whole
hierarchies. Clients treat compositions and individual objects
uniformly.



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite

Motivating example:

Let’s consider a graphical editor, supporting lines, shapes,
text and pictures

Components can be grouped to form larger components
(e.g. shape built using multiple lines)

Treating all components the same way simplifies client
code greatly

The key: use an abstract class to represent both primitive
components, as well as compositions



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite

Figure: From [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite

Motivating example:

Graphic class includes operations for management of its
children
Line, Rectangle, Text are primitive components, and can
draw themselves using Draw()
Primitive classes do not have children be definition
Picture defines an aggregation of Graphic objects, and can
be used recursively

Figure: From [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite

Figure: General case (from [1])



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite

Consequences:

+ Simplifies clients, as they no longer care about the exact
type of object they have

+ New leaves can be added without additional changes

– Design might be too general, as you cannot restrict
composite components (e.g. GUI widget hierarchies in the
abstract factory pattern that cannot be mixed between
platforms)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite

Implementation details:

Children can also have a reference to parent, managed by
Component

Maintain the invariant of the parent-child relationship

Where to define management of children?

Component class: transparent, as all classes are treated
the same, but not safe, as operations on children don’t
make sense for leaves
Composite class: opaque, as it hidden by the component
class, but safer

Tension between maximizing the Component interface
(generally good) and the types of leaves that can be added

How do you know whether a component is a Composite
without casting?



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Composite example code

Source code

git: /src/ubb/dp/structural/composite



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator

Decorator pattern

Attach additional responsibilities to an object dynamically

Dynamically means at runtime

Most flexible, much more than inheritance

Figure: Decorator example (from [1])



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator

Suppose we have a GUI component that does not support
scrolling or borders (can you provide examples?)

Sometimes we will need these additional behaviours, but
not every time

We wrap our component into a decorator that forwards
components messages and adds its own behaviour

Decorators are transparent to clients and can be chained
recursively



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator

Figure: Decorator examples (from [1])



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator

When to use:

Add responsibilities to individual objects transparently

These responsibilities can be withdrawn dynamically

When subclassing is impractical (e.g. result in a large
number of classes, class definitions unavailable)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator

+ More flexible than inheritance (e.g.
BorderBorderScrollablePanel ?)

+ Only add what you need by composition

– Decorators are transparent but not equal to the decorated
object (don’t use object identity)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator

Decorator versus Strategy :

Decorator changes the skin

Strategy changes the internals (e.g. a List class might
implement the strategy pattern for sorting it)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator example code

Source code

git: /src/ubb/dp/structural/DecoratorExampleComputer.java



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Decorator example code

Source code

git: /src/ubb/dp/structural/DecoratorExamplePizza.java



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Façade

Façade pattern

Provide a unified interface to a set of interfaces in a subsystem.
Defines a higher-level interface through which the subsystem is
easier to use



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Façade

Goal is to reduce apparent complexity
Facade reduces the communication between systems -
makes their interactions, and possibly the larger system,
easier to understand

Figure: https://www.javaworld.com/article/2073463/fa–231-ade-
clears-complexity.html



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Façade

Example of a compiler:

Compiler includes classes Scanner, Parser, *Node,
NodeBuilder, CodeGenerator and so on

They all do something useful, and should be exposed

If you implement an IDE plugin with syntax highlighting,
auto-complete and incremental compiling all this comes in
VERY handy

What if you just want to compile the thing!?



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Façade

The Compiler class is the system façade

Figure: from [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Façade

When to use the façade pattern:

Provide a simple, default view of a subsystem, ”good
enough” for most of its clients

Reduce the number of dependencies between a subsystem
and its clients

Layer the subsystem - create façades as the entry point for
each layer



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Façade

Consequences:

Shield clients from subsystems by providing a common
access point for most (all?) subsystems

Promote weak coupling, help organize a system

You don’t lose flexibility: all the nitty gritty is still there, if
you need to use it

Implementation:

You can create an abstract Façade, which you subclass
depending on the view that is required by clients (e.g. one
for compiling, one for syntax highlighting)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Façade example code

Compiler example source code

git: /src/ubb/dp/structural/FacadeCompilerExample.java

Source code

git: /src/ubb/dp/structural/FacadeComputerExample.java



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Flyweight pattern

Share data to support a large number of instances efficiently.



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Everything is an object leads to a useful representation in
OO languages

If too many things are objects, you have too little memory
,

e.g. *CellRenderer classes in Java are implemented as
Flyweights

+ Flyweight shares common attributes between instances to
save memory

– More complex implementation, added coupling



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Motivating example - a 3D shooter game with particle effects

Naive implementation uses a complete instance for each
particle

However, certain particle classes can share state (e.g. all
bullets look alike)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Naive implementation for particle system

Figure: https://refactoring.guru/design-patterns/flyweight



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Flyweight implementation:

Realize that particle color and texture are constant for
many particles

Coordinates, movement vector are updated by the particle
system

Flyweight divides instance state:

Intrinsic: constant within the object, can be read but
does not change

Extrinsic: depends on flyweight context, is supplied from
the outside



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Flyweight particle implementation

Figure: https://refactoring.guru/design-patterns/flyweight



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Resulting savings

Figure: https://refactoring.guru/design-patterns/flyweight



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Use flyweight when all these are true:

Application uses a large number of objects

Storage requirements are high

Large groups of objects can be replaced by a small number
of shared objects

Application does not depend on object identity

– Flyweights might trade storage requirements with
computation requirements (no such thing as free lunch)

– Flyweights definitely trade simplicity for storage
requirements



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Where do we store extrinsic state?

In a different class, where else? ,

Extract extrinsic state to another object (e.g. Context)

The class containing the extrinsic state together with the
Flyweight represent a complete object

Flyweight instances should be created using a Factory in
order to centralize instance creation



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight

Figure: https://refactoring.guru/design-patterns/flyweight



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Flyweight example code

Compiler example source code

git: /src/ubb/dp/structural/FlyweightTreeExample.java



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Proxy

Proxy pattern

Provide a surrogate or placeholder for another object to control
access to it.

Why would you do that?

Lazily load expensive resources (e.g. email client,
database BLOBS, large object hierarchies)

Restrict access to a resource (e.g. check whether caller
has the correct credentials for access)

The same proxy class can be used for different subjects,
by programming to an interface



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Proxy

The proxy object replaces the subject

It forwards calls to the subject, when required

Figure: from [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Proxy

(Virtual) proxy example:

Figure: from [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Proxy

Proxy pattern implementations:

Remote proxy: local representation for an object in a
different address space (e.g. web service, database lazy
loading)

Virtual proxy: create expensive objects on demand

Protection proxy: control access to objects

Smart reference: smart pointers (and object locks etc.)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Proxy

Roles in the pattern

Figure: from [1]



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Proxy pattern example code

Virtual proxy source code

git: /src/ubb/dp/structural/ProxyExampleImage.java

Protection proxy example code

git: /src/ubb/dp/structural/ProxyExampleProtection.java



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Structural Patterns

Adapter versus Bridge - fight! ,

+ Provide flexibility using indirection

+ Forward requests from a different interface

– Adapter is usually employed after implementation, to
connect distinct components, subsystems

– Bridge is created as a conscious decision at design time



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Structural Patterns

Composite versus Decorator

+ Composite and Decorator have similar structure

– Composite structures classes to be used uniformly

– Decorator allows you to add responsibilities by
composition (without subclassing)



Lecture 03

Lect. PhD.
Arthur Molnar

Structural
Patterns

Intro

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Structural Patterns

Decorator versus Proxy

+ Provide a level of indirection to an object

– Proxy is not designed to add responsibilities

– Proxy is not designed to be applied recursively


	Structural Patterns
	Intro
	Adapter
	Bridge
	Composite
	Decorator
	Façade
	Flyweight
	Proxy


