
Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Creational Patterns

Lect. PhD. Arthur Molnar

Babes-Bolyai University

arthur@cs.ubbcluj.ro



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Overview

1 Creational Patterns
Intro & Example
Abstract Factory
Factory Method
Builder
Prototype
Singleton Pattern



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Creational Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Intro

Creational patterns abstract the instantiation process

They hide the the object creation process (remember,
”new is glue”)

Emphasis placed on fundamental behaviours that can be
combined into complex ones

What is created can be decided at compile, or at run time



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

We use the common example of building a maze to study
these patterns

A maze is a set of connected rooms; each room knows its
direct neighbours - another room, a wall or a door
leading to another room

Keeping it simple - directions are north, south, east, west

Keeping it even simpler - ignore everything else (no
multiplayer or pew pew ,)



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

Figure: From [1]



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

MapSite is abstract

The rest are concrete, but can be subclassed

Behaviour of Enter() depends on trying a door or another
room



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

Maze source code

git: /ubb/dp/creational/maze



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

What does the source code look like?

It’s incomplete - obviously

MazeGame looks more complicated than it should be

Could move wall creation code to Room constructor...

Big problem: inflexible

We can’t change maze layout, or the type of its elements
(e.g. PewPewRoom) without changing the code

Overriding it = new implementation, twice the work

Changing in place = we might need this version too, kind
of error-prone



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

Where creational patterns come in:

Make the design more flexible (not necessarily smaller)

Changing the maze type, or its elements should be easier
(some doors need a key or spell, rooms might have a
ticking bomb...)

This can be achieved when we no longer hard-code the
creation of the maze’s elements

New is glue, remember?



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

Where creational patterns come in

Abstract Factory: pass CreateMaze a parameter that
can be used to create maze elements; you can change
maze element types by providing a different parameter

Factory Method: instead of using constructor calls, call
some virtual functions, which can be replaced by
subclassing



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

A-Mazeing

Where creational patterns come in

Builder: pass CreateMaze an object that can build an
entire maze by creating rooms, walls and door sequentially,
and then varying this using inheritance.

Prototype: parameterize CreateMaze using prototypes for
maze elements, which you clone, configure and add to the
maze.

Singleton: use it to ensure the maze program uses a
single maze, to which all components have access.



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Abstract Factory

Intent

Provide an interface to create a family of related or dependent
objects, without specifying concrete classes



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Abstract Factory

Figure: From
https://en.wikipedia.org/wiki/Abstract_factory_pattern

https://en.wikipedia.org/wiki/Abstract_factory_pattern


Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Abstract Factory

Figure: From
https://en.wikipedia.org/wiki/Abstract_factory_pattern

https://en.wikipedia.org/wiki/Abstract_factory_pattern


Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Abstract Factory

The base class is abstract, and several concrete factories
implement it

The Client only refers the AbstractFactory and abstract
products, in order to remove dependency to actual
implementations

Client only commits to the interface, not the
implementation => Open/Closed principle using
polymorphism

The Factory enforces dependency between classes (e.g.
don’t try to use a macOS button in a Windows context)



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Abstract Factory

When to use, tips & tricks

System independent from how products are created and
composed

System can be configured with several product families
(hint: check out Factory if it’s not a product family)

Products should be used together

Supporting new products is difficult, due to extensively
specified interfaces

Implementations are usually based on the Factory Method,
and since there is usually a single concrete factory, it can
be implemented as a Singleton



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Abstract Factory

Source code

git: /src/ubb/dp/creational/AbstractFactoryExample



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Factory Method

Gang of Four

”Define an interface for creating an object, but let subclasses
decide which class to instantiate. The Factory method lets a
class defer instantiation it uses to subclasses.”

Define an interface for object instantiation, but let
subclassess decide the type that is created

The abstract factory is one of this pattern’s users



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Factory Method



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Factory Method

Varieties

Creator can be concrete and create a default object, which
subclasses can override (provides a hook)

Creator can be parameterized, with the created type
depending on the provided parameter (e.g.
Logger.getLogger(String name) (concrete factory))

Concrete creators can also be templated, according to the
Product they should create



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Factory

Source code

git: /src/ubb/dp/creational/FactoryExample



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Separate the construction of a complex object from its
representation

The same construction process can result in different
representations

Construction is made step by step



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Example: Rich Text Format (RTF) conversion

”Understanding” the file format, and converting it to
another one (e.g. ASCII, TeX, PDF representation) are
different things

The first part is common, the second one isn’t

A good solution will not duplicate code, and will be open
for extension - additional converters can be added later on



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Figure: From [1]



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

ASCII converter only cares about the text elements

TeX converts all RTF elements to TeX

The TextWidget converter produces a GUI element



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Figure: From
https://en.wikipedia.org/wiki/Builder_pattern

https://en.wikipedia.org/wiki/Builder_pattern


Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Roles in the Builder pattern

Director: constructs the object using the Builder
interface (e.g. the RTF reader in our example)

Builder: specifies the interface for creating the parts of
the product (e.g. the TextConverter)

Concrete builder: constructs & assembles the product,
keeps track of the representation, provides an interface to
retrieve it (e.g. the TeXConverter from our example)

Product: the complex object being constructed (e.g.
ASCIIText, TextWidget)



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Using the builder pattern

Lets you vary the product internal representation

Improves encapsulation by hiding product internal
representation

Compared to factory patterns, provides more control over
the build process



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Implementation issues

Sometimes appending the latest element to the Product
under construction is enough (e.g. converters example,
Java’s StringBuilder, Calendar, Locale), but sometimes it
isn’t (e.g. the Maze game example), and additional data
structures are required (e.g. parse trees)

No abstract product class!?

Base class with concrete but empty methods. Why? ,



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Builder

Source code

git: /src/ubb/dp/creational/BuilderExample



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Prototype

What is it?

Use a prototype instance to decide the types of objects to
create

Clone the prototype to obtain new instances

When to use it?

System independent of how product are created,
composed and represented, and

classes to instantiate are provided at run-time
(dynamically loaded)

want to avoid building a factory hierarchy



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Prototype Example

Figure: From https://www.tutorialspoint.com/design_

pattern/prototype_pattern.htm

https://www.tutorialspoint.com/design_pattern/prototype_pattern.htm
https://www.tutorialspoint.com/design_pattern/prototype_pattern.htm


Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Prototype Example 1

Source code

git: /src/ubb/dp/creational/ShapesPrototype



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Prototype

Figure: From [1]



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Prototype

Pattern roles

Prototype: declares the interface for cloning itself (e.g.
could be Java’s Cloneable, but read this first:
https://www.artima.com/intv/bloch13.html

ConcretePrototype: implements the actual operation to
clone itself

Client: creates new objects using cloning

https://www.artima.com/intv/bloch13.html


Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Prototype Example 2

Building a maze using the Prototype pattern

Source code

git: /src/ubb/dp/creational/PrototypeMaze



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Prototype

Consequences

Shares benefits with the factory patterns (hides product
details from clients)

Better support using dynamic binding

Avoid building class hierarchies for purposes of design

Implement a PrototypeManager for handling prototype
instances (maybe as Singleton?)

Drawbacks

Implementation issues with shallow vs. deep copy,
composition, circular references

Implementation woes given Java’s Cloneable interface
(does not include the clone() method, objects are built
using field-copy and not constructors, leading to possible
invariant violations)



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Singleton Pattern

Ensure a class has a single instance

Provide a global access point to that instance

e.g. graphical user interface, file system, database
connection

Instead of using a global variable, make the class itself
responsible of its sole instance

The Singleton class can be inherited from



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Singleton Pattern

Singleton design allows you to control the number of
instances

Allows extension through polymorphism, unlike C++
static methods

e.g. graphical user interface, file system, database
connection

Instead of using a global variable, make the class itself
responsible of its sole instance



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Singleton Pattern

The Singleton class can be inherited from

Thread safety should be ensured

Lazy versus eager instance creation

Using a SingletonRegistry provides a global management
point for several singleton classes

Multiton is the singleton pattern allowing several instances



Lecture 02

Lect. PhD.
Arthur Molnar

Creational
Patterns

Intro & Example

Abstract Factory

Factory Method

Builder

Prototype

Singleton
Pattern

Singletons !?

Building a correct singleton maze factory in Java

Source code

git: /src/ubb/dp/creational/MazeSingleton


	Creational Patterns
	Intro & Example
	Abstract Factory
	Factory Method
	Builder
	Prototype
	Singleton Pattern


