
Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Recap. SOLID Principles

Lect. PhD. Arthur Molnar

Babes-Bolyai University

arthur@cs.ubbcluj.ro



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Overview

1 Recap
Encapsulation
Inheritance
Polymorphism

2 Introduction to SOLID
Single Responsibility Principle
Open/Closed
Liskov Substitution
Liskov Substitution
Interface Segregation
Dependency Inversion



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Recap

’Member some of the fundamental concepts of
object-oriented programming?

Encapsulation, Inheritance, Polymorphism



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Encapsulation

Restrict direct access to an object’s components

Bundle data and methods operating on it together

The purpose is to achieve potential for change

G. Booch - ”Object-Oriented Analysis and Design with
Applications”

”the process of compartmentalizing the elements of an
abstraction that constitute its structure and behavior;
encapsulation serves to separate the contractual interface of an
abstraction and its implementation”



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Encapsulation

A few examples:

How does it work in C++, Java, Python?

What about SQL?

How about a toaster or a car?

NB!

Encapsulation works at different levels, so context and
semantics are always important



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Encapsulation

C++, Java, C# - private, protected, public

C++ - default is private, while in Java default is default
(same as protected, adding package level access).

C# - adds the internal modifier, which grants access
within the same assembly (.dll or .exe file)

Underscore counting with Python

C++ has public, protected and private inheritance



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Inheritance

Implements and IS-A type of relationship

Classes vs. Interfaces

You can inherit from interfaces (Java, C#), or other
classes

You can inherit from several interfaces and a single base
class

Particularities

C++, Python allow you to inherit from multiple classes
Java 8 adds support for default interface methods... why?
Diamond problem and solutions



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Inheritance

Source code

git: [...]/examples/recap/inheritance



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Polymorphism

The property of an entity to react differently depending on
its type

It allows different entities to behave in different ways in
response to the same action.

In source code

Allows different objects (depending on their type) to respond in
different ways to the same message (a different method is
called).



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Polymorphism

Let’s examine how polymorphism works:

Java, Python, C#, C++

Source code

git: [...]/examples/recap/polymorphism



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Polymorphism

Java
Emphasis on simplicity, all methods are virtual
Adds a level of indirection to method calls, unless they are
marked final

Python
Does not make sense to declare variable type
Everything is evaluated at runtime



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Polymorphism

C++
Concerned about efficiency and space
vtable pointer overhead only for methods marked virtual
Other methods are bound at compile time

C#
Shows it has roots in C++
Polymorphism similar to C++ implementation
C# adds the override keyword, avoiding the issue where a
same-name virtual method is later added to a base class,
adding unwanted polymorphism



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

SOLID

Introduced by Robert C. Martin in 2000 in the Design
Principles and Design Patterns paper, they apply to any
object-oriented design.

What is SOLID?

Single responsibility
principle

Open/Closed

Liskov Substitution

Interface Segregation

Dependency Inversion
Figure: Robert C. Martin



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

SOLID

First proponent of SOLID principles1

Figure: Book selection authored by Robert C. Martin

1This section organized according to
https://stackify.com/solid-design-principles/



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Importance of SOLID principles

1 The foundation of a well designed application

2 Make software designs more understandable, flexible and
maintainable

3 Guidelines that can be applied while working on software
to remove code smells

4 Part of an overall strategy of agile and adaptive
programming



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Single Responsibility Principle (SRP)

One of the basic principles used to build software that is
easy to maintain

Can be applied at function, class, module and component
level (at least)

The answer to What should this function / class /
component do? should not include and

Entities doing only one thing are also easier to understand

What is it?

A class or module should have one, and only one, reason to
change (responsibility).



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Single Responsibility Principle

Consider a module that compiles and prints a report.

Such a module can be changed for two reasons:
1 The content of the report could change.
2 The format of the report could change.

These two things change for very different causes; one
substantive, and one cosmetic.

Single responsibility principle says that these two aspects
of the problem are really two separate responsibilities, and
should therefore be in separate classes or modules.

It would be a bad design to couple two things that change
for different reasons at different times.

...

The reason it is important to keep a class focused on a single
concern is that it makes the class more robust.



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

SRP - Separation of concerns (SoC)

A design principle for separating a computer program into
distinct sections, such that each section addresses a
separate concern.

Can be general, such as intended for module.

Can be specific, such as the name of a class to instantiate.

A program that embodies SoC well is called a modular
program.

Modularity, and hence separation of concerns, is achieved
by encapsulating information inside a section of code that
has a well-defined interface.



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

SRP - Separation of concerns (SoC)

Layered designs in information systems are another
embodiment of separation of concerns (e.g., presentation layer,
business logic layer, data access layer, persistence layer).

Figure: Separation of concerns



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

SRP - Separation of concerns (SoC)

Figure: Separation of concerns



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Open/Closed Principle

Bertrand Mayer

Software entities (functions, classes, modules, components)
should be open for extension, but closed for modification.

Idea is to enable adding functionality without changing
existing code

It should prevent changes in one place from requiring
changes in many other places

How to achieve this?

Bertrand Mayer - Inheritance
Robert C. Martin - Polymorphism



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Open/Closed Principle

Bertrand Mayer - Inheritance

Bertrand Mayer

”A class is closed, since it may be compiled, stored in a library,
baselined, and used by client classes. But it is also open, since
any new class may use it as parent, adding new features. When
a descendant class is defined, there is no need to change the
original or to disturb its clients.

Inheritance opens the issue of derived classes using
implementation details of the parent

Tension between inheritance and encapsulation.



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Open/Closed Principle

Robert C. Martin - Polymorphism

Replace inheritance with programming to interfaces

Interfaces are closed to modification, but open for new
implementations

Interfaces add an additional abstraction level, facilitating
loose coupling



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Open/Closed Principle

Coffee Machine example

We have a simple coffee machine that brews filter coffee

We have an app to control it

Problem

How does the app change when we buy a fancy coffee machine,
which can brew both filter coffee (using ground coffee) and
espresso (using coffee beans)?



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Open/Closed Principle

A tale of two coffee makers...

Figure:
https://stackify.com/solid-design-liskov-substitution-principle/



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Open/Closed Principle

Solution

Extract the common functionalities of coffee machines to
an interface

The app talks to the machine through the interface

Source code

git: [...]/examples/solid/openclosed



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Liskov Substitution principle

Barbara Liskov - ”Data Abstraction”

Let Θ(x) be a property provable about objects x of type T.
Then Θ(y) should be true for objects y of type S where S is a
subtype of T.



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Liskov Substitution Principle

If S is a subtype of T, then objects of type T may be
replaced with objects of type S without breaking program
behaviour

Derived classes must be usable through the base class
interface, without the need for the user of the class to
know the difference

Think Java method overwriting!

Overriden methods can have more lax requirements, but
not stricter ones!
Care with input parameters, return values (covariant return
types in Java 5+), thrown exceptions!



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Liskov Substitution Principle

Example 1

Basic example for Liskov Substitution Principle



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Liskov Substitution Principle

Liskov Substitution at work

Say we have two coffee machines, a basic and a premium
one

A common base class or interface could make the code of
the coffee app using it simpler

What issues might we run into, if any?



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Liskov Substitution Principle

A tale of two coffee makers...

Figure:
https://stackify.com/solid-design-liskov-substitution-principle/



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Liskov Substitution Principle

A common parent could unify only the brewCoffee() and
addCoffee() methods

The brewCoffee() methods can both make filter coffee, so
the base class or interface method has to at least support
that

Parameters for addCoffee() differ!?

A common base class for GroundCoffe and CoffeeBean
(maybe Coffee?) is possible, but requires additional check
in both machines

Common interface should only required what is supported
in both machines - brewCoffee() method that makes filter
coffee



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Liskov Substitution Principle

Figure:
https://stackify.com/solid-design-liskov-substitution-principle/



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Robert C. Martin

”Clients should not be forced to depend upon interfaces that
they do not use.”

Split large interfaces into smaller and more specific ones;
clients will only know about those in which they are
directly interested

Keeps a system decoupled - easier to refactor, change, and
redeploy

The contents of an interface should be decided upon
depending on the needs of the client



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

No one writes bad software because they want to

Clients wanting new functionalities (yesterday) is great for
business, but can be a technological nightmare

Interface pollution - forcing clients to depend on methods
they should not care about

A tale of two coffee machines...



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Class BasicCoffeeMachine models a basic, filter coffee
maker

Reeading that it’s better to program behind an interface,
we extract the CoffeeMachine interface, with methods
addGroundCoffee() and brewFilterCoffee()

Wouldn’t it be great if we also support esspresso
machines? (modeled in the EsspressoMachine class)

Of course, the espresso machine has the brewEspresso()
method, which is a different type of coffee



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

What to do, what to do?

1 Refactor under the CoffeeMachine interface

2 Use the interface segregation principle



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Refactor under the CoffeeMachine interface

1 Change EsspressoMachine so that it implements the
CoffeeMachine interface − > also implement
brewFilterCoffee()

2 Add the brewEspresso() method to the CoffeeMachine
interface

3 Add the brewEspresso() method to the
BasicCoffeeMachine

4 Hint: maybe use a default interface method?



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Figure: https://stackify.com/interface-segregation-principle/



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Problems?

1 Classes must implement a contract they cannot provide

2 Programming through the interface might result in an
Exception - no coffee for you...

3 The interface and classess depend on things they have no
control of (e.g. change in BasicCoffeeMachine affects the
interface and the EspressoMachine class)



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Use the interface segregation principle

1 Identify and group common functionalities in a base
interface - CoffeeMachine

2 Have separate interfaces for different types of coffee
makers



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Figure: https://stackify.com/interface-segregation-principle/



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Interface Segregation principle

Follow-up question

’Member the PremiumCoffeeMachine that can make both filter
and espresso?



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Dependency Inversion principle

Refers to decoupling software modules.

The principle states:

High-level modules should not depend on low-level
modules. Both should depend on abstractions.
Abstractions should not depend on details. Details should
depend on abstractions.

When designing the interaction between a high-level
module and a low-level one, the interaction should be
thought of as an abstract interaction between them.



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Dependency Inversion principle

Traditional layers pattern

Lower-level components are designed to be consumed by
higher-level components which enable increasingly complex
systems to be built
Higher-level components depend directly upon lower-level
components to achieve some task

Follow-up question

Where have I heard this before?



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Dependency Inversion principle

The tale of coffee machines - BasicCoffeeMachine and
PremiumCoffeeMachine

Abstract available functionalities behind interfaces

Create suitable interfaces - fewer classes/interfaces do not
necessarily improve design



Lecture 01

Lect. PhD.
Arthur Molnar

Recap

Encapsulation

Inheritance

Polymorphism

Introduction
to SOLID

Single
Responsibility
Principle

Open/Closed

Liskov
Substitution

Liskov
Substitution

Interface
Segregation

Dependency
Inversion

Dependency Inversion principle

Figure: https://stackify.com/dependency-inversion-principle/


	Recap
	Encapsulation
	Inheritance
	Polymorphism

	Introduction to SOLID
	Single Responsibility Principle
	Open/Closed
	Liskov Substitution
	Liskov Substitution
	Interface Segregation
	Dependency Inversion


