(Nem)determinisztikus görbe- és felületmodellezési eszközök Riemann- és Finsler-geometriában, variációszámításban és számítógépes grafikában

- 2008 - 2012/2013 -

Róth Ágoston

Matematika és Informatika Intézet, Babeş-Bolyai Tudományegyetem, Kolozsvár, Románia

2013. március 20.

Alexandru Kristály, Gheorghe Moroşanu, Ágoston Róth, 2008. Optimal placement of a deposit between markets: a Riemann-Finsler geometrical approach, Journal of Optimization Theory and Applications, 139(2):263-276, IF₂₀₀₈ = 0.860, RIS ≈ 1.1188589540412.

Matsumoto-féle sík/lejtő

$$F_{\alpha}(y_1, y_2) = \frac{y_1^2 + y_2^2}{v\sqrt{y_1^2 + y_2^2} + \frac{g}{2}y_1 \sin(\alpha)},$$
$$(y_1, y_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$$

$$d_{\alpha} \left(\mathbf{p}, \mathbf{p}_{i} \right) = F_{\alpha} \left(\mathbf{p}_{i}^{1} - \mathbf{p}^{1}, \mathbf{p}_{i}^{2} - \mathbf{p}^{2} \right),$$

$$d_{\alpha} \left(\mathbf{p}_{i}, \mathbf{p} \right) = F_{\alpha} \left(\mathbf{p}^{1} - \mathbf{p}_{i}^{1}, \mathbf{p}^{2} - \mathbf{p}_{i}^{2} \right),$$

$$i = 1, 2, 3.$$

$$\begin{split} & \boldsymbol{C}_{f}\left(\mathbf{p}\right) = \sum_{i=1}^{3} d_{\alpha}\left(\mathbf{p},\mathbf{p}_{i}\right), \\ & \boldsymbol{C}_{b}\left(\mathbf{p}\right) = \sum_{i=1}^{3} d_{\alpha}\left(\mathbf{p}_{i},\mathbf{p}\right). \end{split}$$

Matsumoto-féle sík/lejtő

Értelmezés (Finsler-sokaság)

- Tekintsük az összefüggő, m-dimenziós, C[∞] simaságú M sokaságot és ennek a TM = ∪_{p∈M} T_pM érintő vektornyalábját!
- Ha az $F: TM \rightarrow [0,\infty)$ folytonos függvény
 - C^{∞} -osztályú a $TM \setminus \{\mathbf{0}\}$ halmazon,
 - elsőfokúan pozitív homogén, azaz

$$F(\mathbf{p}, t\mathbf{y}) = tF(\mathbf{p}, \mathbf{y}), \forall t \geq 0, \forall \mathbf{y} \in T_{\mathbf{p}}M,$$

•

$$g_{ij}(\mathbf{y}) := \left[\frac{1}{2}F_{y^iy^j}\right](\mathbf{y})$$

Hesse-mátrixa pozitív definit minden $\mathbf{y} \in T_{\mathbf{p}}M$ esetén,

akkor az (M, F) párost Finsler-sokaságnak nevezzük.

Megjegyzés

Ha az (M, F) Finsler-sokaság esetén az F függvény abszolút homogén $(F(\mathbf{p}, t\mathbf{y}) = |t| F(\mathbf{p}, \mathbf{y}), \forall t \geq \mathbb{R}, \forall \mathbf{y} \in T_{\mathbf{p}}M)$, akkor a sokaságot reverzibilisnek (megfordíthatónak) nevezzük.

Értelmezés (Integrálhossz)

• A $\mathbf{c}: [0, r] \to M$ szakaszonként C^{∞} -osztályú görbe integrálhosszát az

$$L_{F}\left[\mathbf{c}\right] = \int_{0}^{r} F\left(\mathbf{c}\left(t\right), \dot{\mathbf{c}}\left(t\right)\right) \mathrm{d}t$$

funkcionál értéke adja.

Jelölés (Ugyanazokra a végpontokra illeszkedő, szakaszonként végtelenül sima görbecsalád)

$$\Gamma_{[0,r]}(\mathbf{p},\mathbf{q}) = \{ \mathbf{c} \in C^{\infty} ([0,r], M) : \mathbf{c}(0) = \mathbf{p}, \, \mathbf{c}(r) = q \}$$

Értelmezés (Kvázimetrika)

А

$$d_{F}: M \times M \to [0, \infty), \ d_{F}(\mathbf{p}, \mathbf{q}) = \inf_{\mathbf{c} \in \Gamma_{[0, r]}(\mathbf{p}, \mathbf{q})} L_{F}[\mathbf{c}]$$

leképezés teljesíti a $d_F(\mathbf{p}, \mathbf{q}) \ge 0$ és $d_F(\mathbf{p}, \mathbf{r}) \le d_F(\mathbf{p}, \mathbf{q}) + d_F(\mathbf{q}, \mathbf{r})$ egyenlőtlenségeket minden $\mathbf{p}, \mathbf{q}, \mathbf{r} \in M$ pont esetén, általában viszont nem teljesíti a $d_F(\mathbf{p}, \mathbf{q}) = d_F(\mathbf{q}, \mathbf{p})$ szimmetriát, mert F csak pozitív homogén függvény.

Megvalósított célkitűzések

Szükséges és elégséges feltételeket szerkesztettünk a

$$\begin{split} & \boldsymbol{C}_{f}\left(\mathbf{p}_{i}, n, s\right)\left(\mathbf{p}\right) = \sum_{i=1}^{n} d_{F}^{s}\left(\mathbf{p}, \mathbf{p}_{i}\right), \, \mathbf{p} \in \boldsymbol{M} \\ & \boldsymbol{C}_{b}\left(\mathbf{p}_{i}, n, s\right)\left(\mathbf{p}\right) = \sum_{i=1}^{n} d_{F}^{s}\left(\mathbf{p}_{i}, \mathbf{p}\right), \, \mathbf{p} \in \boldsymbol{M} \end{split}$$

költségfüggvények minimumpontjainak létezésére és elhelyezkedésére nézve, ahol $n \in \mathbb{N}$, $s \geq 1$, $[\mathbf{p}_i]_{i=1}^n \in \mathcal{M}_{1,n}(M)$ rögzített adatok.

Finsler-Poincaré körmodell

$$M = \left\{ (x_1, x_2) : x_1^2 + x_2^2 < 4 \right\},$$

$$x_1 = r \cos \theta, x_2 = r \sin \theta,$$

$$\mathbf{v} = p \frac{\partial}{\partial r} + q \frac{\partial}{\partial \theta} \in T_{(r,\theta)} M,$$

$$F((r,\theta), \mathbf{v}) = \frac{1}{1 - \frac{r^2}{4}} \sqrt{p^2 + r^2 q^2} + \frac{pr}{1 - \frac{r^4}{16}}$$

$$\mathbf{p}_1 = (1.6, 170^\circ).$$

$$\mathbf{p}_2 = (1.3, 250^\circ)$$

$$\begin{split} \mathbf{p}_{f} &= \mathbf{p}_{1} \neq \mathbf{t}_{f} \approx (1.9999, 171.5237^{\circ}), \\ \mathbf{C}_{f} \left(\mathbf{p}_{i}, 2, 1 \right) \left(\mathbf{p}_{f} \right) \approx 2.32507 > \mathbf{C}_{f} \left(\mathbf{p}_{i}, 2, 1 \right) \left(\mathbf{t}_{f} \right) \approx 2.32079, \end{split}$$

$$\begin{aligned} \mathbf{p}_{b} &\approx (0.8541, 212.2545^{\circ}) \\ &\neq \mathbf{t}_{b} \approx (0.4472, 212.5589^{\circ}), \\ \mathcal{C}_{b} \left(\mathbf{p}_{i}, 2, 1 \right) \left(\mathbf{p}_{b} \right) &\approx 1.26 > \mathcal{C}_{b} \left(\mathbf{p}_{i}, 2, 1 \right) \left(\mathbf{t}_{f} \right) \approx 0.950825. \end{aligned}$$

• Alexandru Kristály, **Ágoston Róth**, 2009–2013. From metric properties to a rigidity conjecture on Finsler manifolds via a geodesic detecting algorithm, manuscript.

Nyitott kérdés

Ha a nem feltétlenül reverzibilis (M, F) Finsler-sokaság esetén az (M, d_F) Finsler-tér Busemann értelemben nempozitív görbületű, akkor (M, F)kötelezően Berwald-tér.

$$\begin{split} \varepsilon &\in \left[-1,1\right), \, \mathbf{p} \in M = B^{m}\left(\mathbf{0},1\right) = \left\{\mathbf{p} \in \mathbb{R}^{m} : \left|\mathbf{p}\right| < 1\right\}, \, \mathbf{y} \in T_{\mathbf{p}}B^{m}\left(\mathbf{0},1\right) \\ F_{\varepsilon}\left(\mathbf{p},\mathbf{y}\right) &= \frac{1}{2}\left(\frac{\sqrt{|\mathbf{y}|^{2} - \left(|\mathbf{p}|^{2} | \mathbf{y}|^{2} - \langle \mathbf{p}, \mathbf{y} \rangle^{2}\right)} + \langle \mathbf{p}, \mathbf{y} \rangle}{1 - |\mathbf{p}|^{2}} - \frac{\varepsilon\sqrt{|\mathbf{y}|^{2} - \varepsilon^{2}\left(|\mathbf{p}|^{2} | \mathbf{y}|^{2} - \langle \mathbf{p}, \mathbf{y} \rangle^{2}\right)} + \varepsilon^{2}\left\langle \mathbf{p}, \mathbf{y} \right\rangle}{1 - \varepsilon^{2} |\mathbf{p}|^{2}}\right) \end{split}$$

$$\begin{split} & \mathcal{M} = \left\{ \mathbf{p} = ((x_1, x_2), \tilde{\mathbf{x}}_3) \in \mathbb{R}^2 \times \mathbb{R}^{m-2} : x_1^2 + x_2^2 < 1 \right\}, \\ & \mathbf{y} = ((y_1, y_2), \tilde{\mathbf{y}}_3) \in \mathcal{T}_{\mathbf{p}} \mathcal{M} = \mathbb{R}^m, \ \mathcal{F}(\mathbf{p}, \mathbf{y}) = \frac{\sqrt{(-x_2y_1 + x_1y_2)^2 + |\mathbf{y}|^2 \left(1 - x_1^2 - x_2^2\right)} - (-x_2y_1 + x_1y_2)}{1 - x_1^2 - x_2^2} \end{split}$$

- m = 3,
 - $p_0(-0.25, -0.5, -1.0),$ $p_1(-0.4975, 0.5, 1.0),$ $p_2(0.995, 0.0, 0.5),$

 $d_{F}(\mathbf{p}_{0}, \mathbf{p}_{1}) = 2.28325263,$ $d_{F}(\mathbf{p}_{0}, \mathbf{p}_{2}) = 1.59552717,$ $d_{F}(\mathbf{p}_{1}, \mathbf{p}_{2}) = 1.63538395,$ $d_{F}(\mathbf{m}_{1}, \mathbf{m}_{2}) = 1.03707673.$

 Ágoston Róth, Alexandru Kristály, 2005–2013. Multiple solutions of elliptic equations by means of stochastic algorithms, manuscript¹.

¹...további bevont személyek: Bodó Zalán, Farkas Csaba

$$\begin{cases} u''(x) = -\frac{3}{20} \cdot \ln(1 + u^2(x)), x \in [-5, 5] \\ u(-5) = u(5) = 0 \end{cases}$$

- Adott az $\emptyset
 eq \Omega \subset \mathbb{R}^d$ korlátos tartomány ($d \geq 1$),
- a $\lambda > 0$ valós paraméter,
- továbbá az $f : \mathbb{R} \to \mathbb{R}$ folytonos függvény, mely esetén:
 - léteznek $lpha > \mathsf{0}$ és $eta \in (\mathsf{0},\mathsf{1})$ skalárok úgy, hogy teljesül az

$$\left|f\left(t
ight)
ight|\leqlpha\left(1+\left|t
ight|^{eta}
ight),\,orall t\in\mathbb{R}$$

egyenlőtlenség (másképpen fogalmazva, f szublineáris növekedésű a végtelenben),

• igaz a

$$\lim_{t\to 0}\frac{f(t)}{t}=0$$

határérték (azaz f szuperlineáris az origóban).

 Ekkor létezik a Λ ⊂ (0,∞) nyílt intervallum úgy, hogy bármely λ ∈ Λ paraméter esetén a

$$\begin{cases} \Delta u(x) = -\lambda \cdot f(u(x)), x \in \Omega, \\ u|_{\partial \Omega} \equiv 0 \end{cases}$$

elliptikus egyenletnek van legalább három gyenge megoldása.

 Az említett gyenge megoldások bizonyos stabilitási feltétellel rendelkeznek: valójában az

$$\mathbb{E}_{\lambda}\left[u\right] = \frac{1}{2} \int_{\Omega} |\nabla u(\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} - \lambda \cdot \int_{\Omega} \left(\int_{0}^{u(\mathbf{x})} f(t) \, \mathrm{d}t \right) \mathrm{d}\mathbf{x}$$

energiafunkcionál kritikus pontjainak felelnek meg (kettő közülük lokális minimum, míg a harmadik mountain pass típusú kritikus pont).

Kontrollpont-alapú modellezés Görbék interaktív leírása

Számítógéppel segített geometriai tervezésben (CAGD-ben) a görbék legelterjedtebb megadási módja

$$\left\{ \begin{array}{l} \mathbf{c} : [\mathbf{a}, \mathbf{b}] \to \mathbb{R}^{\delta}, \ \delta \geq 2, \\ \mathbf{c}(u) = \sum_{i=0}^{n} \mathbf{d}_{i} \ F_{i}(u), \end{array} \right.$$

alakú, ahol a $\mathbf{d}_i \in \mathbb{R}^{\delta}$ vektorokat a

$$\left[\mathbf{d}_{i}\right]_{i=0}^{n}\in\mathcal{M}_{1,n+1}\left(\mathbf{d}_{i}\right)$$

kontrollpoligont meghatározó kontrollpontoknak nevezzük, míg az $F_i : [a, b] \rightarrow \mathbb{R}$ függvények általában egy függvénytér normalizált bázisát alkotják.

- Ha az F_i függvényeket megfelelően választjuk meg, akkor a generált görbe követi a kontrollpoligonjának alakját, azaz a kontrollpoligon egy intuitív tervezési eszközt biztosít a modellező számára.
- A legismertebb ilyen görbék a Bézier, a racionális Bézier, a B-spline és a NURBS görbék.

Kontrollpont-alapú modellezés Felületek interaktív leírása

Számítógéppel segített tervezésben a felületek általános leírása az

$$\begin{cases} \mathbf{s}: [\mathbf{a}, \mathbf{b}] \times [\mathbf{c}, \mathbf{d}] \to \mathbb{R}^3, \\ \mathbf{s}(u, v) = \sum_{i=0}^n \sum_{j=0}^m \mathbf{d}_{ij} F_i(u) G_j(v), \end{cases}$$

képlettel történik, ahol a $\mathbf{d}_{ij} \in \mathbb{R}^3$ pontok egy kontrollhálót határoznak meg.

• Az

$$\{F_i: [a,b] \to \mathbb{R}\}_{i=0}^n$$

és

$$\{G_j: [c,d] \to \mathbb{R}\}_{j=0}^m$$

függvényrendszerek ugyanazokat az előnyös tulajdonságokat teljesítik, mint amelyeket a görbék esetében vázoltunk – annak ellenére, hogy különböző függvényterek bázisai is lehetnek, gyakorlatban szinte mindig azonos típusúak.

• Az ilyen előállítású felületeket tenzor szorzattal leírt felületeknek nevezzük.

 Imre Juhász, Ágoston Róth, 2008. Bézier surfaces with linear isoparametric lines, Computer Aided Geometric Design, 25(6):385-396,

 $IF_{2008} = 1.512, RIS \approx 1.54403.$

Office Acoustics 2011

A csonkolt Fourier-sorok terének ciklikus bázisa 2009 – 2010

- ④ Ágoston Róth, Imre Juhász, 2010. Control point based exact description of a class of closed curves and surfaces, Computer Aided Geometric Design, 27(2):179-201, IF₂₀₁₀ = 0.859, RIS ≈ 1.54403.

Imre Juhász, Ágoston Róth, 2010. Closed rational trigonometric curves and surfaces, Journal of Computational and Applied Mathematics, 234(8):2390-2404, IF₂₀₁₀ = 1.029, RIS ≈ 0.93261.

Kontrollpont-alapú modellezés A csonkolt Fourier-sorok terének ciklikus bázisa

Ciklikus bázisfüggvények (2009)

A

$$C = \left\{ C_{i,n}(u) = rac{c_n}{2^n} \left(1 + \cos\left(u + i\lambda_n\right)
ight)^n : u \in [\mu, \mu + 2\pi]
ight\}_{i=0}^{2n}, \ n \geq 1$$

függvényrendszer a

$$\mathcal{V}_n = \langle 1, \cos(u), \sin(u), \dots, \cos(nu), \sin(nu) \rangle$$

függvénytérnek (azaz a legfeljebb *n*-edfokú trigonometrikus polinomok terének) bázisát alkotja, ahol:

- $\lambda_n = \frac{2\pi}{2n+1}$ egy fáziseltolás;
- a c_n normalizáló szerepet betöltő konstans teljesíti a

$$\begin{cases} c_1 &=& \frac{2}{3}, \\ c_n &=& \frac{2n}{2n+1}c_{n-1}, \ n \geq 2 \end{cases}$$

rekurziót;

• $\mu \in \mathbb{R}$ egy rögzített valós paraméter.

Kontrollpont-alapú modellezés Zárt ciklikus görbék

Új tervezési eszköz zárt görbék modellezésére (**2009**) A $\mathbf{d} = [\mathbf{d}_i]_{i=0}^{2n} \in \mathcal{M}_{1,2n+1}\left(\mathbb{R}^{\delta}\right), \, \delta \geq 2$

kontrollpoligon és a

$$C = \{C_{i,n}(u) : u \in [\mu, \mu + 2\pi]\}_{i=0}^{2n}, n \ge 1$$

ciklikus bázis az

$$\mathbf{a}_n(u) = \sum_{i=0}^{2n} \mathbf{d}_i C_{i,n}(u), \ u \in [\mu, \mu + 2\pi]$$

n-edfokú ciklikus görbét határozzák meg.

Ciklikus szimmetria

A görbe alakja nem változik, ha a kontrollpontjait ciklikusan permutáljuk.

Szingularitás nélküli paraméterezés

A görbe minden reguláris pontban C^{∞} -osztályú, míg szinguláris pontokban a jobb és bal deriváltak léteznek és szintén nem válnak nullvektorokká.

Affin transzformációkkal szembeni zártság

A görbe alakja invariáns a kontrollpoligonjának affin transzformációira nézve.

Konvex burok tulajdonság

A görbe a kontrollpontjainak konvex burkában van.

Pszeudo-lokális változtathatóság

Hullámzáscsökkentő tulajdonság

Konvexitás megőrzés

Fokszámnövelés

Kontrollpont-alapú modellezés

Véges fokszámú trigonometrikus polinomokkal leírt zárt görbék ciklikus reprezentációja

Kontrollpont-alapú egzakt leírás

Kontrollpont-alapú modellezés Ciklikus felületek

Új tervezési eszköz zárt felületek modellezésére (**2009**) A

$$\mathbf{d} = [\mathbf{d}_{ij}]_{i=0,j=0}^{2n,2m} \in \mathcal{M}_{2n+1,2m+1}\left(\mathbb{R}^3\right)$$

kontrollháló és a

$$C_u = \{C_{i,n}(u) : u \in [\mu, \mu + 2\pi]\}_{i=0}^{2n}, n \ge 1$$

$$C_v = \{C_{j,m}(v) : v \in [\nu, \nu + 2\pi]\}_{i=0}^{2m}, m \ge 1$$

ciklikus bázisok az

$$\mathbf{s}_{n,m}(u,v) = \sum_{i=0}^{2n} \sum_{j=0}^{2m} \mathbf{d}_{ij} C_{i,n}(u) C_{j,m}(v), \ (u,v) \in [\mu, \mu + 2\pi] \times [\nu, \nu + 2\pi]$$

(n, m) fokszámú ciklikus felületet határozzák meg. A hullámzáscsökkentés kivételével a ciklikus felületek öröklik a ciklikus görbék összes előnyös tulajdonságát.

Kontrollpont-alapú modellezés Ciklikus felületek

Ciklikus felületek fokszám növelése

n = 2, m = 4

n=1, m=2

Kontrollpont-alapú modellezés

Véges fokszámú, szétválasztható változójú trigonometrikus polinomokkal leírt felületek ciklikus reprezentációja

(b)

Kontrollpont-alapú modellezés

Véges fokszámú, szétválasztható változójú trigonometrikus polinomokkal leírt felületek ciklikus reprezentációja

(b)

Kontrollpont-alapú modellezés A C ciklikus bázis racionális kiterjesztése

Racionális trigonometrikus bázisfüggvények (**2010**) A

$$\mathbf{w} = [w_i]_{i=0}^{2n}$$

nemnegatív súlyvektor és a C ciklikus bázis az

$$R = \left\{ R_{i,n}(u) = \frac{w_i C_{i,n}(u)}{\sum_{j=0}^{2n} w_j C_{j,n}(u)} : u \in [\mu, \mu + 2\pi] \right\}_{i=0}^{2n}.$$

racionális trigonometrikus bázist határozzák meg.

Kontrollpont-alapú modellezés Zárt racionális trigonometrikus görbék

Új tervezési eszköz zárt racionális trigonometrikus görbék modellezésére (2010) A

$$\mathbf{d} = [\mathbf{d}_i]_{i=0}^{2n} \in \mathcal{M}_{1,2n+1}\left(\mathbb{R}^{\delta}\right), \ n \ge 1, \ \delta \ge 2$$

kontrollpoligon, a

$$\mathbf{w} = [w_i]_{i=0}^{2n}$$

nemnegatív súlyvektor, és az

$$R = \{R_{i,n}(u) : u \in [\mu, \mu + 2\pi]\}_{i=0}^{2n}$$

racionális trigonometrikus bázis, az

$$\mathbf{r}_n(u) = \sum_{i=0}^{2n} \mathbf{d}_i R_{i,n}(u), \ u \in [\mu, \mu + 2\pi]$$

n-edfokú zárt trigonometrikus görbét határozzák meg. A ciklikus szimmetria kivételével, ezek a görbék öröklik a ciklikus görbék előnyös tulajdonságait.

Kontrollpont-alapú modellezés Zárt racionális trigonometrikus felületek

Új tervezési eszköz zárt racionális trigonometrikus felületek modellezésére (**2010**)

$$\mathbf{d} = \left[\mathbf{d}_{k\ell}\right]_{k=0,\ell=0}^{2n,2m} \in \mathcal{M}_{2n+1,2m+1}\left(\mathbb{R}^3\right),$$

kontrollháló, a

Α

$$\mathbf{w}^{u} = [w_{k}^{u}]_{k=0}^{2n}, \mathbf{w}^{v} = [w_{\ell}^{v}]_{\ell=0}^{2m}$$

nemnegatív súlyvektorok, és az

$$\begin{aligned} R_u &= \{R_{k,n}(u) : u \in [\mu, \mu + 2\pi]\}_{k=0}^{2n}, n \ge 1 \\ R_v &= \{R_{\ell,m}(v) : v \in [\nu, \nu + 2\pi]\}_{\ell=0}^{2m}, m \ge 1 \end{aligned}$$

racionális bázisok az

$$\mathbf{s}_{n,m}(u,v) = \sum_{k=0}^{2n} \sum_{\ell=0}^{2m} \mathbf{d}_{k\ell} R_{k,n}(u) R_{\ell,m}(v), \ (u,v) \in [\mu, \mu + 2\pi] \times [\nu, \nu + 2\pi]$$

(n, m) fokszámú zárt racionális trigonometrikus felületet határozzák meg.

Kontrollpont-alapú modellezés Zárt racionális trigonometrikus felületek

Rugalmas tervezési eszköz zárt racionális felületek modellezésére (**2010**) A

$$\mathbf{d} = \left[\mathbf{d}_{k\ell}\right]_{k=0,\ell=0}^{2n,2m} \in \mathcal{M}_{2n+1,2m+1}\left(\mathbb{R}^3\right)$$

kontrollháló, a

$$\mathbf{w} = [w_{k\ell}]_{k=0,\ell=0}^{2n,2m} \in \mathcal{M}_{2n+1,2m+1}(\mathbb{R}_+),$$

nemnegatív súlymátrix az

$$\begin{aligned} \mathbf{s}_{n,m}(u,v) &= \sum_{k=0}^{2n} \sum_{\ell=0}^{2m} \mathbf{d}_{k\ell} \frac{w_{k\ell} C_{k,n}(u) C_{\ell,m}(v)}{\sum_{i=0}^{2n} \sum_{j=0}^{2n} w_{ij} C_{i,n}(u) C_{j,m}(v)}, \\ (u,v) &\in [\mu, \mu + 2\pi] \times [\nu, \nu + 2\pi], \\ n &\geq 1, \ m \geq 1 \end{aligned}$$

(n, m) fokszámú zárt racionális trigonometrikus felületet határozzák meg.

Véges fokszámú, szétválasztható változójú, racionális trigonometrikus polinomokkal leírt zárt görbék/felületek kontrollpont-alapú reprezentációja

Kontrollpont-alapú egzakt leírás (projektív geometriai szemlélet)

Véges fokszámú, szétválasztható változójú, racionális trigonometrikus polinomokkal leírt zárt görbék/felületek kontrollpont-alapú reprezentációja

Kontrollpont-alapú egzakt leírás (projektív geometriai szemlélet)

Véges fokszámú, szétválasztható változójú, racionális trigonometrikus polinomokkal leírt zárt görbék/felületek kontrollpont-alapú reprezentációja

Kontrollpont-alapú egzakt leírás (projektív geometriai szemlélet)

(b)

Véges fokszámú, szétválasztható változójú, racionális trigonometrikus polinomokkal leírt zárt görbék/felületek kontrollpont-alapú reprezentációja

Kontrollpont-alapú egzakt leírás (projektív geometriai szemlélet)

 Ágoston Róth, Imre Juhász, 2009. Quadrilateral mesh generation from point clouds by a Monte Carlo Method, In The 17th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (eds. Min Chen, Vaclav Skala), 97–104, ISBN 978-80-86943-93-0, Publisher University of West Bohemia in Pilsen (indexed by SCIE Thomson-Reuters).

Sima interpoláló felületek funkcionális optimalizálása

 Agoston Róth, Imre Juhász, 2011. Constrained surface interpolation by means of a genetic algorithm, Computer-Aided Design, 43(9):1194–1210, IF₂₀₁₁ = 1.234, RIS ≈ 1.31898.

Sima interpoláló felületek funkcionális optimalizálása NURBS bázisfüggvények

(a)

(b)

Sima interpoláló felületek funkcionális optimalizálása NURBS bázisfüggvények. Minimális felszín

(a)

Sima interpoláló felületek funkcionális optimalizálása NURBS bázisfüggvények. Minimális Willmore-energia

Sima interpoláló felületek funkcionális optimalizálása NURBS bázisfüggvények. Minimális umbilikus eltérés

Sima interpoláló felületek funkcionális optimalizálása NURBS bázisfüggvények. Minimális teljes görbületi energia

Sima interpoláló felületek funkcionális optimalizálása NURBS bázisfüggvények. Minimális súlyozott Mehlum–Tarrou energia

Sima interpoláló felületek funkcionális optimalizálása NURBS bázisfüggvények. Minimális √súlyozott Mehlum–Tarrou energia

A Agenera and

Sima interpoláló felületek funkcionális optimalizálása Ciklikus bázisfüggvények. Izoperimetrikus probléma

Sima interpoláló felületek funkcionális optimalizálása Ciklikus bázisfüggvények. Izoperimetrikus probléma ötvözése minimális √súlyozott Mehlum–Tarrou energiával

Sima interpoláló felületek funkcionális optimalizálása Algebrai trigonometrikus B-bázisfüggvények

Háromszögű (racionális) trigonometrikus foltok

 Ágoston Róth, Imre Juhász, Alexandru Kristály, 2010–2013. Triangular (rational) trigonometric patches, manuscript².

²...további bevont személyek: András Szilárd, Lukács Andor, Somogyi Ildikó

Háromszögű (racionális) trigonometrikus foltok Célkitűzések

Célkitűzések

• Tekintsük a maximálisan *n*-edfokú $(n \ge 0)$ trigonometrikus polinomok (másképpen csonkolt Fourier-sorok)

$$\mathcal{F}_{2n}^{\alpha} = \operatorname{span} \left\{ \cos\left(iu\right), \sin\left(iu\right) : u \in [0, \alpha] \right\}_{i=0}^{n},$$

terét, ahol $\alpha \in (0,\pi)$ tetszőleges rögzített alakparaméter!

• Sánchez-Reyes igazolta³, hogy az $\mathcal{F}^{\alpha}_{2n}$ függvénytér normalizált B-bázisát a

$$\left\{A_{2n,i}^{\alpha}\left(u\right): u \in [0,\alpha]\right\}_{i=0}^{2n} = \left\{c_{2n,i}^{\alpha} \sin^{2n-i}\left(\frac{\alpha-u}{2}\right) \sin^{i}\frac{u}{2}: u \in [0,\alpha]\right\}_{i=0}^{2n}$$

függvényrendszer adja, ahol a

$$c_{2n,i}^{\alpha} = \frac{1}{\sin^{2n}\frac{\alpha}{2}} \sum_{r=0}^{\left\lfloor \frac{i}{2} \right\rfloor} {n \choose i-r} {i-r \choose r} \left(2\cos\frac{\alpha}{2}\right)^{i-2r}, \ i = 0, 1, \dots, 2n$$

konstansok egyrészt normalizációs szerepet töltenek be, másrészt pedig a

$$c_{2n,i}^{\alpha}=c_{2n,2n-i}^{\alpha},\ i=0,1,\ldots,n$$

szimmetriát is teljesítik.

³Sánchez-Reyes, J., **1998**. *Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials.* Computer Aided Geometric Design, **15**(9), 909–923.

Háromszögű (racionális) trigonometrikus foltok Célkitűzések

Célkitűzések – folytatás

 Célunk, hogy meghatározzuk az $\mathcal{F}^{\alpha}_{2n}$ függvénytér megszorításos háromváltozós kiterjesztését az

$$\Omega^{\alpha} = \{u, v, w \in [0, \alpha] : u + v + w = \alpha\}$$

tartomány felett, azaz, hogy megszerkesszük a

$${\cal V}^lpha_n={\sf span}\ V^lpha_n$$

függvénytér nemnegatív normalizált bázisát, ahol a V_n^{α} függvényrendszer a

$$\{\cos(ru + gv + bw), \sin(ru + gv + bw) : (u, v, w) \in \Omega^{\alpha}\}_{r=0,g=0,b=0}^{n,n,n}$$

függvényrendszer legnagyobb lineárisan független részhalmazát jelöli.

Háromszögű (racionális) trigonometrikus foltok Eddigi eredmények

Előzmények...

• W.-Q. Shen és G.-Z. Wang az n = 1 és 2 sajátos esetekhez tartozó

$$\mathcal{F}_{2}^{\alpha} = \operatorname{span} \left\{ 1, \cos\left(u\right), \sin\left(u\right) : u \in [0, \alpha] \right\},$$

illetve

$$\mathcal{F}_{4}^{\alpha} = \operatorname{span} \left\{ 1, \cos\left(u\right), \sin\left(u\right), \cos\left(2u\right), \sin\left(2u\right) : u \in [0, \alpha] \right\}$$

függvényterek háromszögű kiterjesztését határozták^{4,5} meg az Ω^{α} tartomány felett.

- A szerzők dolgozataikban mindenfajta magyarázat nélkül az n=1 és 2 esetekben $\delta_1 = 7$, illetve $\delta_2 = 19$ darab háromváltozós függvényt vezettek be...
- ...mi több, a bevezetett függvényrendszerek tulajdonságait nagyon mesterkélt, komputeralgebrai programokra épített bizonyítások során látják be, és meg is jegyzik, hogy egyrészt az általános esetben a feladat ilyenfajta kezelését reménytelennek tartják, másrészt hangsúlyozzák, hogy a szakirodalomban nem találnak idevágó fogalmakat, eszköztárakat.

⁴Shen, W.-Q., Wang, G.Z., **2010**. *Triangular domain extension of linear Bernstein-like trigonometric polynomial basis*. Journal of Zhejiang University Science C (Computers & Electronics), **11**(5), 356–364.

⁵Shen, W.-Q., Wang, G.Z., **2010**. The triangular domain extension of Bézier-like basis for 5-order trigonometric polynomial space. Journal of Computer-Aided Design and Computer Graphics, **22**(5), 833–837.

Háromszögű (racionális) trigonometrikus foltok Általános eset: a függvényrendszer megszerkesztése

Multiplikatívan súlyozott irányított gráf

Háromszögű (racionális) trigonometrikus foltok Általános eset: a függvényrendszer megszerkesztése

Az R_{2n}^{α} , G_{2n}^{α} és B_{2n}^{α} alrendszerek

$$\left\{ R_{2n,2n-i,j}^{\alpha}\left(u,v,w\right) \right\}_{j=0,i=j}^{n,n} = \left\{ \sin^{2n-i} \frac{u}{2} \sin^{i} \frac{w}{2} \cos^{i-j} \frac{v}{2} \sin^{j} \frac{v}{2} \right\}_{j=0,i=j}^{n,n} \\ \left\{ R_{2n,2n-i,j}^{\alpha}\left(u,v,w\right) \right\}_{j=0,i=n+1}^{n-1,2n-j} = \left\{ R_{2n,i,j}^{\alpha}\left(w,v,u\right) \right\}_{j=0,i=n+1}^{n-1,2n-j} = \left\{ \sin^{i} \frac{w}{2} \sin^{2n-i} \frac{u}{2} \cos^{2n-i-j} \frac{v}{2} \sin^{j} \frac{v}{2} \right\}_{j=0,i=n+1}^{n-1,2n-j}$$

$$\left\{ G_{2n,2n-i,j}^{\alpha} \left(u, v, w \right) \right\}_{j=0,i=j}^{n,n} = \left\{ R_{2n,2n-i,j}^{\alpha} \left(w, u, v \right) \right\}_{j=0,i=j}^{n,n} \\ = \left\{ \sin^{2n-i} \frac{w}{2} \sin^{i} \frac{v}{2} \cos^{i-j} \frac{u}{2} \sin^{j} \frac{u}{2} \right\}_{j=0,i=j}^{n,n}, \\ \left\{ G_{2n,2n-i,j}^{\alpha} \left(u, v, w \right) \right\}_{j=0,i=n+1}^{n-1,2n-j} = \left\{ G_{2n,i,j}^{\alpha} \left(u, w, v \right) \right\}_{j=0,i=n+1}^{n-1,2n-j} = \left\{ \sin^{i} \frac{v}{2} \sin^{2n-i} \frac{w}{2} \cos^{2n-i-j} \frac{u}{2} \sin^{j} \frac{u}{2} \right\}_{j=0,i=n+1}^{n-1,2n-j}$$

$$\begin{cases} B_{2n,2n-i,j}^{\alpha} \left(u, v, w \right) \end{cases}_{j=0,i=j}^{n,n} = \begin{cases} R_{2n,2n-i,j}^{\alpha} \left(v, w, u \right) \end{cases}_{j=0,i=j}^{n,n} \\ = \left\{ \sin^{2n-i} \frac{v}{2} \sin^{i} \frac{u}{2} \cos^{i-j} \frac{w}{2} \sin^{j} \frac{w}{2} \right\}_{j=0,i=j}^{n,n}, \\ \begin{cases} B_{2n,2n-i,j}^{\alpha} \left(u, v, w \right) \end{cases}_{j=0,i=n+1}^{n-1,2n-j} = \left\{ B_{2n,i,j}^{\alpha} \left(v, u, w \right) \right\}_{j=0,i=n+1}^{n-1,2n-j} = \left\{ \sin^{i} \frac{u}{2} \sin^{2n-i} \frac{v}{2} \cos^{2n-i-j} \frac{w}{2} \sin^{j} \frac{w}{2} \right\}_{j=0,i=n+1}^{n-1,2n-j} \end{cases}$$
Háromszögű (racionális) trigonometrikus foltok Általános eset: a függvényrendszer megszerkesztése

Az R_{2n}^{α} , G_{2n}^{α} és B_{2n}^{α} alrendszerek megfelelő egyesítése

$$\begin{split} T_{2n}^{\alpha} &= \left\{ R_{2n,2n-i,j}^{\alpha} \left(u, v, w \right), G_{2n,2n-i,j}^{\alpha} \left(u, v, w \right), B_{2n,2n-i,j}^{\alpha} \left(u, v, w \right) : \left(u, v, w \right) \in \Omega^{\alpha} \right\}_{j=0,i=j}^{n-1,2n-1-j} \\ & \cup \left\{ R_{2n,n,n}^{\alpha} \left(u, v, w \right) = G_{2n,n,n}^{\alpha} \left(u, v, w \right) = B_{2n,n,n}^{\alpha} \left(u, v, w \right) = \sin^{n} \frac{u}{2} \sin^{n} \frac{v}{2} \sin^{n} \frac{w}{2} : \left(u, v, w \right) \in \Omega^{\alpha} \right\} \end{split}$$

Háromszögű (racionális) trigonometrikus foltok Kontrollpontok elrendezése

Háromszögű (racionális) trigonometrikus foltok Háromszögű *n*-edfokú trigonometrikus foltok értelmezése

Értelmezés (*n*-edfokú trigonometrikus háromszögfoltok) Az $\mathbf{s}_n^{\alpha}: \Omega^{\alpha} \to \mathbb{R}^3$,

$$s_{n}^{\alpha}(u, v, w) = r_{2n,n,n}\overline{R}_{2n,n,n}^{\alpha}(u, v, w) + \sum_{j=0}^{n-1}\sum_{i=j}^{2n-1-j} r_{2n,2n-i,j}\overline{R}_{2n,2n-i,j}^{\alpha}(u, v, w) + \sum_{j=0}^{n-1}\sum_{i=j}^{2n-1-j} g_{2n,2n-i,j}\overline{G}_{2n,2n-i,j}^{\alpha}(u, v, w) + \sum_{j=0}^{n-1}\sum_{i=j}^{2n-1-j} b_{2n,2n-i,j}\overline{B}_{2n,2n-i,j}^{\alpha}(u, v, w)$$

megszorításos háromváltozós vektorfüggvényt n-edfokú ($n \ge 1$) trigonometrikus háromszögfoltnak nevezzük, ahol az

$$\{\mathbf{r}_{2n,2n-i,j}\}_{j=0,i=j}^{n,2n-1-j} \cup \{\mathbf{g}_{2n,2n-i,j}\}_{j=0,i=j}^{n-1,2n-1-j} \cup \{\mathbf{b}_{2n,2n-i,j}\}_{j=0,i=j}^{n-1,2n-1-j} \subset \mathbb{R}^{3}$$

vektorok a folt kontrollhálóját határozzák meg.

Háromszögű (racionális) trigonometrikus foltok Példa harmadfokú trigonometrikus háromszögfoltra

Háromszögű (racionális) trigonometrikus foltok Fokszámnövelés

Háromszögű (racionális) trigonometrikus foltok Kontrollpont-alapú egzakt leírás

Háromszögű (racionális) trigonometrikus foltok Kontrollpont-alapú egzakt leírás

Háromszögű (racionális) trigonometrikus foltok n-edfokú racionális trigonometrikus háromszögfoltok értelmezése

Értelmezés (n-edfokú racionális trigonometrikus háromszögfoltok)

- A nemnegatív és azonosan nem nulla $\rho_{2n,n,n}$, $\{\rho_{2n,2n-i,j}\}_{j=0,i=j}^{n-1,2n-1-j}$, $\{\gamma_{2n,2n-i,j}\}_{j=0,i=j}^{n-1,2n-1-j}$, $\{\beta_{2n,2n-i,j}\}_{j=0,i=j}^{n-1,2n-1-j}$ skalárok (súlyok) használatával racionális általánosításhoz jutunk.
- A $\mathbf{q}_n^{\alpha} : \Omega^{\alpha} \to \mathbb{R}^3$,

$$\begin{split} \mathbf{q}_{n}^{\alpha}\left(u,v,w\right) &= \rho_{2n,n,n}\mathbf{r}_{2n,n,n}^{\alpha}\frac{\overline{R}_{2n,n,n}^{\alpha}\left(u,v,w\right)}{\overline{\tau}_{n}^{\alpha}\left(u,v,w\right)} + \sum_{j=0}^{n-12n-1-j}\sum_{i=j}^{j}\rho_{2n,2n-i,j}\mathbf{r}_{2n,2n-i,j}^{\alpha}\frac{\overline{R}_{2n,2n-i,j}^{\alpha}\left(u,v,w\right)}{\overline{\tau}_{n}^{\alpha}\left(u,v,w\right)} \\ &+ \sum_{j=0}^{n-12n-1-j}\gamma_{2n,2n-i,j}\mathbf{g}_{2n,2n-i,j}\frac{\overline{G}_{2n,2n-i,j}^{\alpha}\left(u,v,w\right)}{\overline{\tau}_{n}^{\alpha}\left(u,v,w\right)} \\ &+ \sum_{j=0}^{n-12n-1-j}\gamma_{2n,2n-i,j}\mathbf{g}_{2n,2n-i,j}\frac{\overline{B}_{2n,2n-i,j}^{\alpha}\left(u,v,w\right)}{\overline{\tau}_{n}^{\alpha}\left(u,v,w\right)} \end{split}$$

megszorításos háromváltozós vektorfüggvényt n-edfokú ($n \ge 1$) racionális trigonometrikus háromszögfoltnak nevezzük, ahol az

$$\{\mathbf{r}_{2n,2n-i,j}\}_{j=0,i=j}^{n,2n-1-j} \cup \{\mathbf{g}_{2n,2n-i,j}\}_{j=0,i=j}^{n-1,2n-1-j} \cup \{\mathbf{b}_{2n,2n-i,j}\}_{j=0,i=j}^{n-1,2n-1-j} \subset \mathbb{R}^{3}$$

vektorok a folt kontrollhálóját határozzák meg, míg

$$\overline{\tau}_{n}^{\alpha}(u, v, w) = \rho_{2n,n,n} \overline{R}_{2n,n,n}^{\alpha}(u, v, w) + \sum_{\ell=0}^{n-12n-1-\ell} \sum_{k=\ell}^{\rho_{2n,2n-k,\ell}} \overline{P}_{2n,2n-k,\ell} \overline{R}_{2n,2n-k,\ell}^{\alpha}(u, v, w) + \sum_{\ell=0}^{n-12n-1-\ell} \sum_{k=\ell}^{\gamma_{2n,2n-k,\ell}} \overline{P}_{2n,2n-k,\ell} \overline{P}_{2n,2n-k,\ell}^{\alpha}(u, v, w) + \sum_{\ell=0}^{n-12n-1-\ell} \sum_{k=\ell}^{\rho_{2n,2n-k,\ell}} \overline{P}_{2n,2n-k,\ell} \overline{P}_{2n,2n-k,\ell}^{\alpha}(u, v, w) + \sum_{\ell=0}^{n-12n-1-\ell} \sum_{k=\ell}^{\rho_{2n,2n-k,\ell}} \overline{P}_{2n,2n-k,\ell}^{\alpha}(u, v, w) + \sum_{\ell=0}^{n-12n-1-\ell} \overline{P}_{2n,2n-k,\ell}^{\alpha}(u, v, w) + \sum_{\ell=0}^{n-12n-1-\ell}$$

Háromszögű (racionális) trigonometrikus foltok Kontrollpont-alapú egzakt leírás

Háromszögű (racionális) trigonometrikus foltok Nyitott kérdések

Pillanatnyilag megválaszolatlan kérdések

- Az n-edfokú normalizációs együtthatók általános alakja.
- Ø Általános fokszámnövelés egzakt vagy rekurzív képlete.
- 8 Sorozatos felosztásos algoritmus kidolgozása.
- A multiplikatívan súlyozott irányított gráf kiterjesztése (racionális) trigonometrikus térfogatmodellek (pl. inhomogén tömör testek) leírásához.

Köszönöm a figyelmet!

