

1

Computer Science Manual for Bachelor
Graduation Examination

June and September 2016

Computer Science Specialization

General topics:

Part 1. Algorithms and Programming

1. Search (sequential and binary), sorting (selection sort, bubble sort, quicksort). The

backtracking method.

2. OOP concepts in programming languages (Python, C++, Java, C#): class and object,

members of a class and access modifiers, constructors and destructors.

3. Relationships between classes. Derived classes and the inheritance relationship.

Method overriding. Polymorphism. Dynamic binding. Abstract classes and interfaces.

4. Class diagrams and UML interactions among objects: Packages, classes and

interfaces. Relations between classes and interfaces. Objects. Messages

5. Lists, Maps. Specification of typical operations (without implementations)

6. Identify data structures and data types suitable (efficient) for solving problems (only

the data structures specified at 5.). The use of existing libraries for these structures

(Python, Java, C++, C#).

Part 2. Databases

1. Relational databases. First three normal forms of a relation.

2. Querying databases using relational algebra operators.

3. Querying relational databases using SQL (Select).

Part 3. Operating systems

1. The structure of UNIX file systems.

2. Unix processes: creation and the fork, exec, wait system calls. Pipe and FIFO

communication.

3. Unix Shell programming and basic Unix commands: cat, cp, cut, echo, expr, file, find,

grep, less, ls, mkdir, mv, ps, pwd, read, rm, sort, test, wc, who.

2

Content

1. ALGORITHMICS AND PROGRAMMING .. 3

1.1. SEARCHING AND SORTING ... 3

1.1.1 Searching ... 3

1.1.2 Internal sorting .. 5

1.1.3 The backtracking method ... 8

1.2. OOP CONCEPTS IN PROGRAMMING LANGUAGES ... 12

1.2.1 Classes .. 12

1.3. RELATIONSHIPS BETWEEN CLASSES .. 21

1.3.1 Theoretical basis ... 21

1.3.2. Declaration of derived classes .. 21

1.3.3. Virtual functions... 22

1.3.4. Abstract classes .. 27

1.3.5. Interfaces.. 29

1.4 CLASS DIAGRAMS AND UML INTERACTIONS AMONG ABJECTS: PACKAGES, CLASSES

AND INTERFACES. RELATIONS BETWEEN CLASSES AND INTERFACES. OBJECTS. MESSAGES .. 30

1.4.1 Class diagrams... 34

1.4.2 Interaction diagrams .. 40

1.5 LISTS AND MAPS .. 43

1.5.1. Lists .. 43

1.5.2. Maps ... 48

1.6 PROPOSED PROBLEMS .. 50

2. DATABASES.. 52

2.1. RELATIONAL DATABASES. THE FIRST THREE NORMAL FORMS OF A RELATION 52

2.1.1. Relational model .. 52

2.1.2. First three normal forms of a relation ... 55

2.2. QUERYING DATABASES USING RELATIONAL ALGEBRA OPERATORS 62

2.3. QUERYING RELATIONAL DATABASES USING SQL (SELECT) 65

2.4. PROPOSED PROBLEMS ... 70

3. OPERATING SYSTEMS .. 72

3.1. THE STRUCTURE OF UNIX FILE SYSTEMS ... 72

3.1.1 Unix File System ... 72

3.1.2. File Types and File Systems ... 75

3.2. UNIX PROCESSES ... 78

3.2.1. Main System Calls for Process Management .. 78

3.2.2. Communicating between processes using pipe .. 82

3.2.3. Communicating between processes with FIFO ... 84

3.3. COMMAND FILE INTERPRETERS .. 86

3.3.1. Shell Command Interpreter Functioning ... 86

3.3.2. Shell Programming .. 87

3.4. PROPOSED PROBLEMS ... 89

4. GENERAL BIBLIOGRAPHY ... 91

3

1. Algorithmics and programming

1.1. Searching and sorting

1.1.1 Searching

 The data are available in the internal memory, as a sequence of records. We will search a

record having a certain value for one of its fields, called search key. If the search is successful,

we will have the position of the record in the given sequence.

 We denote by k1, k2, ..., kn the record keys and by a the key value to be found. Our

problem is, thus, to find the position p characterized by a = kp.

 It is a usual practice to store the keys in increasing sequence. Consequently, we will

assume that

 k1 < k2 < < kn.

 Sometimes, when the keys are already sorted, we may not only be interested to find the

record having the requested key, but, if such a record is not available, we may need to know the

insertion place of a new record with this key, such that the sort order is preserved.

 We thus have the following specification for the searching problem:

 Data a,n,(ki, i=1,n);

 Precondition: nN, n1, and k1 < k2 < < kn ;

 Results p;

 Postcondition: (p=1 and a k1) or (p=n+1 and a > kn) or (1<pn) and (kp-1 < a kp).

1.1.1.1 Sequential search

 The first method is the sequential search, where the keys are successively examined. We

distinguish three cases: a ≤ k1, a > kn, and respectively, k1 < a ≤ kn, the last case leading to the

actual search.

 Subalgorithm SearchSeq (a,n,K,p) is: {nN, n1 and k1 < k2 < < kn}

 {Search p such that: (p=1 and a k1) or}

 { (p=n+1 and a>kn) or (1<pn) and (kp-1 < a kp)}

 Let p:=0; {Case "not yet found"}

 If ak1 then p:=1 else

 If a>kn then p:=n+1 else

 For i:=2; n do

 If (p=0) and (aki) then p:=i endif

 endfor

 endif

 endif

4

 sfsub

 We remark that this method leads to n-1 comparisons in the worst case, because the

counter i will take all the values from 2 to n. The n keys divide the real axis in n+1 intervals.

When a is between k1 and kn, the number of comparisons is still n-1, and when a is outside the

interval [k1, kn], there are at most two comparisons. So, the average complexity has the same

order of magnitude at the worst-case complexity.

 There are many situations when this algorithm does useless computations. When the key

has already been identified, it is useless to continue the loop for the remaining values of i. In

other words, it is desirable to replace the for loop with a while loop. We get the second

subalgorithm, described as follows.

 Subalgorithm SearchSucc(a,n,K,p) is: {nN, n1 and k1 < k2 < < kn}

 {Se caută p astfel ca: p=1 and a k1) or }

 {(p=n+1 and a>kn) or (1<pn) and (kp-1 < a kp)}
 Let p:=1;

 If a>k1 then

 While pn and a>kp do p:=p+1 endwh
 endif

 sfsub

 The algorithm SearchSucc does n comparisons in the worst case. But, on the average, the

number of comparisons is reduced to half, and, as such, the average running-time complexity

order of SearchSucc is the same as with the SearchSeq subalgorithm.

1.1.1.2 Binary search

 Another method, called binary search, more efficient than the previous two methods, uses

the “divide and conquer” technique with respect to working with the data. We start by

considering the relation of the search key to the key of the element in the middle of the

collection. Based on this check we will continue our search in one of the two halves of the

collection. We can thus successively halve the collection portion we use for our search. Since we

modify the size of the collection, we need to consider the ends of the current collection as

parameters for the search. The binary search may effectively be realized with the call

BinarySearch(a, K, 1,n). This function is described hereby.

 Subalgorithm SearchBin (a,n,K,p) is: {nN, n1 and k1 < k2 < < kn}

 {Search p such that: (p=1 and a k1) or}

 {(p=n+1 and a>kn) or (1<pn) and (kp-1 < a kp)}

 If aK1

 then p:=1

 else

 If a>Kn

 then p:=n+1

5

 else p:=BinarySearch(a,K,1,n)

 endif

 endif

 sfsub

 Function BinarySearch (a, K, Left, Right) is:

 If LeftRight-1
 then BinarySearch:=Rigt

 else m:=(Left+Right) Div 2;

 If aKm

 then BinarySearch:=BinarySearch(a,K,Left,m)

 else BinarySearch:=BinarySearch(a,K,m,Right)

 endif

 endif

 sffunc

 The variables Left and Right in the BinarySearch function described above represent the

ends of the search interval, and m represents the middle of the interval. Using this method, in a

collection with n elements, the search result may be provided after at most log2n comparisons.

Thus, the worst case time complexity is proportional to log2n.

 We remark that the function BinarySearch is a recursive function. We can easily remove

the recursion, as we see in the following function:

Function BinarySearchN (a,K,Left,Right) is:

 While Right-Left>1 do

 m:=(Left+Right) Div 2;

 If aKm

 then Right:=m

 else Left:=m

 endif

 endwh

 BinarySearchN:=Right

endfunc

1.1.2 Internal sorting

 Internal sorting is the operation to reorganize the elements in a collection already available

in the internal memory, in such a way that the record keys are sorted in increasing (or

decreasing, if necessary) order.

 From an algorithms complexity point of view, our problem is reduced to keys sorting. So,

the specification of the internal sorting problem is the following:

Data n,K; {K=(k1,k2,...,kn)}

 Precondition: kiR, i=1,n

Results K';

 Postcondition: K' is a permutation of K, having sorted elements, i.e.

 k'1 k'2 ... k'n.

6

1.1.2.1 Selection sort

 The first technique, called Selection Sort, works by determining the element having the

minimal (or maximal) key, and swapping it with the first element. Now, forget about the first

element and resume the procedure for the remaining elements, until all elements have been

considered.

Subalgorithm SelectionSort(n,K) is: {Do a permutation of the}

 {n components of vector K such}

 {that k1 k2 kn }
 For i:=1; n-1 do

 Let ind:=i;

 For j:=i+1; n do

 If kj < kind then ind:=j endif

 endfor

 If i<ind then t:=ki; ki:=kind; kind:=t endif

 endfor

sfsub

 We remark that the total number of comparisons is

 (n-1)+(n-2)+...+2+1=n(n-1)/2

independently of the input data. So, the average computational complexity, as well as the worst-

case computational complexity, is O(n
2
).

1.1.2.2 Bubble sort

 Another method, called BubbleSort, compares two consecutive elements, which, if not in

the expected relationship, will be swapped. The comparison process will end when all pairs of

consecutive elements are in the expected order relationship.

Subalgorithm BubbleSort (n,K) is:

 Repeat

 Let kod:=0; {Hypothesis "is sorted"}

 For i:=2; n do

 If ki-1 > ki then

 t := ki-1;

 ki-1 := ki;

 ki:=t;

 kod:=1 {Not sorted yet!}

 endif

 endfor

 until kod=0 endrep {Sorted}

sfsub

 This algorithms performs (n-1)+(n-2)+ ... +2+1 = n(n-1)/2 comparisons in the worst case,

so the time complexity is O(n
2
).

7

 An optimized variant of BubbleSort is:

Subalgorithm BubbleSort (n,K) is:

 Let s:=0;

 Repeat

 Let kod:=0; {Hypothesis "is sorted"}

 For i:=2; n-s do

 If ki-1 > ki then

 t := ki-1;

 ki-1 := ki;

 ki:=t;

 kod:=1 {Not sorted yet!}
 endif

 endfor

 Let s:=s+1;

 until kod=0 endrep {Sorted}
sfsub

1.1.2.3 Quicksort

 Another, more efficient sorting method is described hereby. The method, called

QuickSort, is based on the “divide and conquer” technique. The subsequence to be sorted is

given through two input parameters, the inferior and superior limits of the substring elements

indices. The procedure call to sort the whole sequence is: QuickSortRec(K,1,n), where n is the

number of records of the given collection. So,

Subalgorithm QuickSort (n,K) is:

 Call QuickSortRec(K,1,n)

sfsub

 The procedure QuickSortRec(K,Left,Right) will sort the subsequence kLeft,kLeft+1,...,

kRight. Before performing the actual sort, the substring will be partitioned in such a way that the

element kLeft (called pivot) occupies the final position in the subsequence. If i is this position, the

substring will be rearranged such that the following condition is fulfilled:

kj ki kl , for Left j < i < l Right (*)

 As soon as the partitioning is achieved, we will only need to sort the subsequence kSt, kSt+1,

..., ki-1 using a recursive call to QuickSortRec(K,Left,i-1) and then the subsequence ki+1, ...,

kDr using a recursive call to QuickSortRec(K,i+1,Right). Of course, we will need to sort

these subsequences only if they have at least two elements. Otherwise, a subsequence of one

element is, actually, sorted.

 The procedure QuickSort is described hereby:

8

Subalgorithm QuickSort (K, Left, Right) este:

 Let i := Left; j := Right; a := ki;

 Repeat

 While kj a and (i < j) do j := j - 1 endwh

 ki := kj;

 While ki a and (i < j) do i := i + 1 endwh

 kj := ki ;

 until i = j endrep

 Let ki := a;

 If St < i-1 then Call QuickSort(K, St, i - 1) endif

 If i+1 < Dr then Call QuickSort(K, i + 1, Dr) endif

endsub

 The time complexity of the described algorithm is O(n
2
) in the worst case, but the

average time complexity is O(nlog2n).

1.1.3 The backtracking method

 The backtracking method is applicable to search problems with more solutions. Its main

disadvantage is that it has an exponential running time. We are first considering two examples

and then will give a few general algorithms for this method.

Problem 1. (Permutations generation) Let n be a natural number. Print all permutations of

numbers 1, 2, ..., n.

A solution for the permutation generation problem in the particular case n = 3, is:

Subalgorithm Permutations1 is:

 For i1 := 1;3 execute

 For i2 := 1;3 execute

 For i3 := 1;3 execute

 Let possible := (i1, i2, i3)

 If components of the possible array are distinct

 then Print possible

 endif

 endfor

 endfor

 endfor

endsub

9

1

1

1 2 3

2

1 2 3

3

1 2 3

2

1

1 2 3

2

1 2 3

3

1 2 3

3

1

1 2 3

2

1 2 3

3

1 2 3

x1

x2

x3

Figure 1.1. Graphical representation of the Cartesian product {1, 2, 3}
3

Let us discuss a few remarks on the subalgorithm Permutations1:

 It is not general: for the general case we cannot describe an algorithm with n imbricated

for loops.

 The total number of checked arrays is 3
3
, and in the general case n

n
. The checked

possible arrays are graphically represented in Figure 1.1: each array is a path from the

tree root to the leaves.

 The algorithm first assigns values to all components of the array possible, and

afterwards checks whether the array is a permutation.

 One way to improve the efficiency of this algorithm is to check a few conditions during

the construction of the array, avoiding in this way the construction of a complete array in the

case we are certain it does not lead to a correct solution. For example, if the first component of

the array is 1, then it is useless to assign the second component the value 1; if the second

component has been assigned the value 2, it is useless to assign the third component the values 1

or 2. In this way, for a large n we avoid generating many arrays of the type (1, ...). For example,

(1, 3, ...) is a potential array (potentially leading to a solution), while the array (1, 1, ...) is

definitely not. The array (1, 3, ...) satisfies certain conditions to continue (set to lead to a

solution): it has distinct components. The gray nodes in Figure 1.1 represent values that do not

lead to a solution.

 We will describe a general algorithm for the backtracking method, and then we will see

how this algorithm may be used to solve the two particular problems we studied in this section.

To start, we will state a few remarks and notations concerning the backtracking algorithm,

applied to a problem where the solutions are represented on arrays of length not necessarily

constant:

1. the solutions search space: S = S1 x S2 x ... x Sn;

2. possible is the array to represent the solutions;

3. possible[1..k] S1 x S2 x ... x Sk is the subarray of solution candidates; it may or may not

lead to a solution, i.e. it may or may not be extended to form a complete solution; the

index k is the number of already constructed solution elements;

10

4. possible[1..k] is promising if it satisfies the conditions that may lead to a solution (Figure

1.2).;

5. solution (n, k, possible) is a function to check whether the potential array possible[1..k] is

a solution of the problem.

Figure 1.2. The search space for the permutations problem

 The search process may be seen in the following subalgorithm:

Subalgorithm Backtracking(n) is: {draft version }

Let k = 1;

@Initialise the search for index k (= 1)

While k > 0 do

 {possible[1..k-1] is a solution candidate }
 @Sequentially search for index k a value v to extend the subarray

 possible[1..k-1] such that possible[1..k] is still a solution

 candidate

 If the search is successful

 then Let possible[k] := v; {possible[1..k] is a solution candidate}

 If solution (n, k, possible) {found a solution; we are still on level k}

 then Print possible[1..k]

 else @ Initialize the search for index k+1 {a potential array }

 Let k = k + 1 {step forward on level k+1}

 endif

 else k = k – 1 {step backward (backtrack to level k-1)}
 endif

endwh

endSub

 In order to write the final version of this algorithm we need to specify the non-standard

elements. We thus need the Boolean function

 condToContinue (k, possible, v)

that checks whether the subarray with the solution candidate possible[1..k-1], extended with the

value v, is still a solution candidate.

11

Then, to initialize the search at level j we need a way to select a fictive element for the set Sj,

with the purpose of indicating that no element has been selected from the set Sj. The function

 init (j)

returns this fictive element.

 In order to search a value on the level j, in the hypothesis that the current value is not

good, we need the Boolean function

 next (j, v, new)

which returns true if it may select a new value in Sj that follows after the value v, value denoted

by new and false when no other values in Sj exist, so no new choice may be made. With these

notations, the subalgorithm becomes:

Subalgorithm Backtracking(n) is: {final version }

Let k = 1 ;

possible[1] := init(1);

While k > 0 execute {possible[1..k-1] is potential}

 Let found := false; v := possible[k] ;

 While next (k, v, new) and not found do

 Let v := new;

 If condToContinue (k, possible, v) then found := true endif

 endwh

 If found then Let possible[k] := v {possible[1..k] is potential}

 if solution (n, k, possible) {found a solution; we are still on level k}
 then Print possible[1..k]

 else Let k = k + 1; {a potential array }

 possible[k] := init(k); {step forward on level k+1}

 endif

 else k = k - 1 {step backward (backtrack to level k-1)}

 endif

endwh

endSub

 The process of searching a value on level k and the functions condToContinue and

solution are problem-dependent. For example, for the permutation generation problem, these

functions are:

function init(k) is:

 init:= 0

endfunc

function next (k, v, new) is:

 if v < n

 then next := true;

 new:= v + 1

 else next := false

 endif

endfunc

function condToContinue (k, possible, v) is:

 kod:=True; i:=1;

 while kod and (i<k) do

 if possible[i] = v then kod := false endif

12

 endwh

 condToContinue := kod

endfunc

function solution (n, k, possible) is:

 solution := (k = n)

endfunc

To conclude, we are providing here the recursive version of the backtracking algorithm,

described using the same helping functions:

Subalgorithm backtracking(n, k, possible) is: {possible[1..k] is potential}

 if solution(n, k, possible) {a solution; terminate the recursive call}

 then print possible[1..k] {else, stay on same level}

 else for each value v possible for possible[k+1] do

 if condToContinue(k+1, possible, v)

 then possible[k+1] := v

 backtracking (n, k+1, possible) {step forward}

 endif

 endfor

 endif {terminate backtracking(n, k, possible) call}

endsub {so, step backward}

The problem is solved by the call backtracking(n, 0, possible).

1.2. OOP concepts in programming languages

1.2.1 Classes

1.2.1.1 Data protection in modular programming

In procedural programming, developing programs means using functions and procedures for

writing these programs. In the C programming language instead of functions and procedures

we have functions that return a value and functions that do not return a value. But in case of

large applications it is desirable to have some kind of data protection. This means that only

some functions have access to problem data, specifically functions referring to that data. In

modular programming, data protection may be achieved by using static memory allocation. If

in a file a datum outside any function is declared static then it can be used form where it was

declared to the end of the file, but not outside it.

Let us consider the following example dealing with integer vector processing. Write a module

for integer vector processing that contains functions corresponding to vector initialization,

disposing occupied memory, raising to the power two and printing vector elements. A

possible implementation of this module is presented in the file vector1.cpp:

#include <iostream>

13

using namespace std;

static int* e; //vector elements

static int d; //vector size

void init(int* e1, int d1) //initialization

{

 d = d1;

 e = new int[d];

 for(int i = 0; i < d; i++)

 e[i] = e1[i];

}

void destroy() //disposing occupied memory

{

 delete [] e;

}

void squared() // raising to the power two

{

 for(int i = 0; i < d; i++)

 e[i] *= e[i];

}

void print() //printing

{

 for(int i = 0; i < d; i++)

 cout << e[i] << ' ';

 cout << endl;

}

Modulul se compilează separat obţinând un program obiect. Un exemplu de program

principal este prezentat în File vector2.cpp:

The module is individually compiled and an object file is produced. A main program example

is presented in the file vector2.cpp:

extern void init(int*, int); //extern may be omitted

extern void destroy();

extern void squared();

extern void print();

//extern int* e;

int main() {

 int x[5] = {1, 2, 3, 4, 5};

 init(x, 5);

 squared();

 print();

 destroy();

 int y[] = {1, 2, 3, 4, 5, 6};

 init(y, 6);

 //e[1]=10; error, data are protected

 squared();

 print();

 destroy();

 return 0;

}

14

Note that even though the main program uses two vectors, we cannot use them together, so

for example the module vector1.cpp cannot be extended to implement vector addition. In

order to overcome this drawback, abstract data types have been introduced.

1.2.1.2 Abstract data types

Abstract data types enable a tighter bound between the problem data and operations

(functions) referring to these data. An abstract data type declaration is similar to a struct

declaration, which apart of the data also declares or defines functions referring to these data.

For example in the integer vector case we can declare the abstract data type:

struct vect {

 int* e;

 int d;

 void init(int* e1, int d1);

 void destroy() { delete [] e; }

 void squared();

 void print();

};

The functions declared or defined within the struct will be called methods and the data will be

called attributes. If a method is defined within the struct (like the destroy method from the

previous example) then it is considered an inline method. If a method is defined outside the

struct then the function name will be replaced by the abstract data type name followed by the

scope resolution operator (::) and the method name. Thus the init, squared and print methods

will be defined within the module as follows:

void vect::init(int *e1, int d1)

{

 d = d1;

 e = new int[d];

 for(int i = 0; i < d; i++)

 e[i] = e1[i];

}

void vect::squared()

{

 for(int i = 0; i < d; i++)

 e[i] *= e[i];

}

void vect::print()

{

 for(int i = 0; i < d; i++)

 cout << e[i] << ' ';

 cout << endl;

}

Even though by the above approach a tighter bound between problem data and functions

referring to these data has been accomplished, data are not protected, so they can be accessed

by any user defined function, not only by the methods. This drawback may be overcome by

using classes.

15

1.2.1.3 Class declaration

A class abstract data type is declared like a struct, but the keyword struct is replaced with

class. Like in the struct case, in order to refer to a class data type one uses the name following

the keyword class (the class name). Data protection is achieved with the access modifiers:

private, protected and public. The access modifier is followed by the character ':'. The private

and protected access modifiers represent protected data while the public access modifier

represent unprotected data. An access modifier is valid until the next access modifier occurs

within a class, the default access modifier being private. Note that structs also allow the use

of access modifiers, but in this case the default access modifier is public.

For example the vector class may be declared as follows:

class vector {

 int* e; //vector elements

 int d; //vector size

public:

 vector(int* e1, int d1);

 ~vector() { delete [] e; }

 void squared();

 void print();

};

Note that the attributes e and d have been declared private (restricted access), while methods

have been declared public (unrestricted access). Of course that some attributes may be

declared public and some methods may be declared private if the problem specifics requires

so. In general, private attributes can only be accessed by the methods from that class and by

friend functions.

Another important remark regarding the above example is that attribute initialization and

occupied memory disposal was done via some special methods.

Data declared as some class data type are called the classes' objects or simply objects. They

are declared as follows:

class_name list_of_objects;

For example, a vector object is declared as follows:

vector v;

Object initialization is done with a special method called constructor. Objects are disposed by

an automatic call of another special method called destructor. In the above example

vector(int* e1, int d1);

is a constructor and

~vector() { delete [] e; }

is a destructor.

Abstract data types of type struct may also be seen as classes where all elements have

unrestricted access. The above constructor is declared inside the class, but it is not defined,

16

while the destructor is defined inside the class. So the destructor is an inline function. In order

to define methods outside a class, the scope resolution operator is used (like in the struct

case).

1.2.1.4 Class members. The this pointer

In order to refer to class attributes or methods the dot (.) or arrow (→) operator is used

(like in the struct case). For example, if the following declarations are considered:

vector v;

vector* p;

then printing the vector v and the vector referred by the p pointer is done as follows:

v.print();

p->print();

However inside methods, in order to refer to attributes or (other) methods only their name

needs to be used, the dot (.) or arrow (→) operators being optional. In fact, the compiler

automatically generates a special pointer, the this pointer, at each method call and it uses the

generated pointer to identify attributes and methods.

The this pointer will be declared automatically as a pointer to the current object. In the

example from above the this pointer is the address of the vector v and the address referred by

the p pointer respectively.

For example, if inside the print method an attribute d is used then it is interpreted as this->d.

The this pointer may also be used explicitly by the programmer.

1.2.1.5. The constructor

Object initialization is done with a special method called constructor. The constructor name

has to be the same with the class name. The class may have multiple constructors. In this case

these methods will have the same name and this is possible due to function overloading. Of

course that the number and/or formal parameter types has to be different otherwise the

compiler cannot choose the correct constructor.

Constructors do not return any value. In this situation the use of the keyword void is

forbidden.

In the following we show an example of a class having as attributes a person's last name and

first name and a method for printing the person's whole name.

File person.h:

class person {

 char* lname;

 char* fname;

public:

 person(); //default constructor

17

 person(char* ln, char* fn); //constructor

 person(const person& p1); //copy constructor

 ~person(); //destructor

 void print();

};

File person.cpp:

#include <iostream>

#include <cstring>

#include "person.h"

using namespace std;

person::person()

{

 lname = new char[1];

 *lname = 0;

 fname = new char[1];

 *fname = 0;

 cout << "Calling default constructor." << endl;

}

person::person(char* ln, char* fn)

{

 lname = new char[strlen(ln)+1];

 fname = new char[strlen(fn)+1];

 strcpy(lname, ln);

 strcpy(fname, fn);

 cout << "Calling constructor (lname, fname).\n";

}

person::person(const person& p1)

{

 lname = new char[strlen(p1.lname)+1];

 strcpy(lname, p1.name);

 fname = new char[strlen(p1.fname)+1];

 strcpy(fname, p1.fname);

 cout << "Calling copy constructor." << endl;

}

person::~person()

{

 delete[] lname;

 delete[] fname;

}

void person::print()

{

 cout << fname << ' ' << lname << endl;

}

File personTest.cpp:

#include "person.h"

int main() {

 person A; //calling default constructor

 A.print();

18

 person B("Stroustrup", "Bjarne");

 B.print();

 person *C = new person("Kernighan","Brian");

 C->print();

 delete C;

 person D(B); //equivalent to person D = B;

 //calling copy constructor

 D.print();

 return 0;

}

We may notice the presence of two special types of constructors: the default constructor and

the copy constructor. If a class has a constructor without any parameters then this is called

default constructor. The copy constructor is used for object initialization given an object of

the same type (in the above example a person having the same last and first name). The copy

constructor is declared as follows:

class_name(const class_name& object);

The const keyword expresses the fact that the copy constructor's argument is not

changed.

A class may contain attributes of other class type. Declaring the class as:

class class_name {

 class_name_1 ob_1;

 class_name_2 ob_2;

 ...

 class_name_n ob_n;

 ...

};

its constructor's header will have the following form:

class_name(argument_list):

ob_1(l_arg_1), ob_2(l_arg_2), ..., ob_n(l_arg_n)

where argument_list and l_arg_i respectively represent the list of formal parameters from the

class_name's constructor and object ob_i respectively.

From the list ob_1(l_arg_1), ob_2(l_arg_2), ..., ob_n(l_arg_n) one my choose not

to include the objects that do not have user defined constructors, or objects that are

initialized by the default constructor, or by a constructor having only implicit parameters.

If a class contains attributes of another class type then first these attributes' constructors are

called followed by the statements from this classes' constructor.

File pair.cpp:

#include <iostream>

#include "person.h"

using namespace std;

19

class pair {

 person husband;

 person wife;

public:

 pair() //implicit constructor definition

 { //the implicit constructors

 } //for objects husband and wife are called

 pair(person& ahusband, person& awife);

 pair(char* lname_husband, char* fname_husband,

 char* lname_wife, char* fname_wife):

 husband(lname_husband, fname_husband),

 wife(lname_wife, fname_wife)

 {

 }

 void print();

};

inline pair::pair(person& ahusband, person& awife):

 husband(ahusband), wife(awife)

{

}

void pair::print()

{

 cout << "husband: ";

 husband.print();

 cout << "wife: ";

 wife.print();

}

int main() {

 person A("Pop", "Ion");

 person B("Popa", "Ioana");

 pair AB(A, B);

 AB.print();

 pair CD("C","C","D","D");

 CD.print();

 pair EF;

 EF.print();

 return 0;

}

Note that in the second constructor, the formal parameters husband and wife have been

declared as references to type person. If they had been declared as formal parameters of type

person, then in the following situation:

pair AB(A, B);

the copy constructor would have been called four times. In situations like this, temporary

objects are first created using the copy constructor (two calls in this case), and then the

constructors of the attributes having a class type are executed (other two calls).

1.2.1.6 The destructor

The destructor is the method called in case of object disposal. Global object destructor is

called automatically at the end of the main function as part of the exit function. So using the

20

exit function in a destructor is not recommended as it leads to an infinite loop. Local objects

destructor is executed automatically when the bloc in which these objects were defined is

finished. In case of dynamically allocated objects, the destructor is usually called indirectly

via the delete operator (provided that the object has been previously created using the new

operator). There is also an explicit way of calling the destructor and in this case the destructor

name needs to be preceded by the class name and the scope resolution operator.

The destructor name starts with the ~ character followed by the class name. Like in the

constructor case, the destructor does not return any value and using he void keyword is

forbidden. The destructor call is various situations in shown in the following example:

File destruct.cpp:

#include <iostream>

#include <cstring>

using namespace std;

class write { //write on stdout what it does.

 char* name;

public:

 write(char* n);

 ~write();

};

write::write(char* n)

{

 name = new char[strlen(n)+1];

 strcpy(name, n);

 cout << "Created object: " << name << '\n';

}

write::~write()

{

 cout << "Destroyed object: " << name << '\n';

 delete name;

}

void function()

{

 cout << "Call function" << '\n';

 write local("Local");

}

write global("Global");

int main() {

 write* dynamic = new write("Dynamic");

 function();

 cout << "In main" << '\n';

 delete dynamic;

 return 0;

}

21

1.3. Relationships between classes

1.3.1 Theoretical basis

The use of abstract data types creates an ensamble for managing data and operations on this

data. By means of the abstract type class data protection is also achieved, so usually the

protected elements can only be accessed by the methods of the given class. This property of

objects is called encapsulation.

But in everyday life we do not see separate objects only, but also different relations among

these objects, and among the classes these objects belong to. In this way a class hierarchy is

formed. The result is a second property of objects: inheritance. This means that all attributes

and methods of the base class are inherited by the derived class, but new members (both

attributes and methods) can be added to it. If a derived class has more than one base class, we

talk about multiple inheritance.

Another important property of objects belonging to the derived class is that methods can be

overridden. This means that an operation related to objects belonging to the hierarchy has a

single signiture, but the methods that describe this operation can be different. So, the name

and the list of formal parameters of the method is the same in both the base and the derived

class, but the implementation of the method can be different. Thus, in the derived class

methods can be specific to that class, although the operation is identified through the same

name. This property is called polymorphism.

1.3.2. Declaration of derived classes

A derived class is declared in the following way:

class name_of_derived_class : list_of_base_classes {

 //new attributes and methods

};

where list_of_base_classes is of the form:

elem_1, elem_2, ..., elem_n
and elem_i for each 1 ≤ i ≤ n can be

public base_class_i

or

protected base_class_i

or

private base_class_i

The public, protected and private keywords are called inheritance access modifiers in this

situation too. They can be missing, and in this case the default modifier is private. Access to

elements from the derived class is presented on Table 1.

22

Access to elements

from the base class

Inheritance access

modifier

Access to elements

from the derived

class

public public public

protected public protected

private public inaccesible

public protected protected

protected protected protected

private protected inaccesible

public private private

protected private private

private private inaccesible

Tabel 1: access to elements from the derived class

We can observe that private members of the base class are inaccesible in the derived class.

Protected and public members become protected and private, respectively, if the inheritance

access modifier is protected and private, respectively, and remain unchanged if the

inheritance access modifier is public. This is why, generally, attributes and methods are

declared protected and the inheritance access modifier is public. Thus, they can be accessed,

but are protected in the derived class, too.

1.3.3. Virtual functions

Polymorphism leads naturally to the problem of determining the method that will be

called for a given object. Let us consider the following example. We declare a base class,

called base, and a class derived from this class, called derived. The base class has two

methods: method_1 and method_2 and method_2 calls method_1. In the derived class

method_1 is overridden, but method_2 is not. In the main program an object of the derived

class is declared and method_2, inherited from the base class, is called. In the C++ language,

this example is written in the following way:

File virtual1.cpp:

#include <iostream>

using namespace std;

class base {

 public:

 void method_1();

 void method_2();

};

23

class derived : public base {

 public:

 void method_1();

};

void base::method_1()

{

 cout << "Method method_1 of the"

 << " base class is called" << endl;

}

void base::method_2()

{

 cout << "Method method_2 of the"

 << " base class is called" << endl;

 method_1();

}

void derived::method_1()

{

 cout << "Method method_1 of the"

 << " derived class is called" << endl;

}

int main() {

 derived D;

 D.method_2();

}

Executing the code, we will have the following result:

Method method_2 of the base class is called

Method method_1 of the base class is called

But this is not the desired result, because in the main function method method_2, inherited

from the base class, was called, but method method_1 called by method_2 was determined at

compile-time. Consequently, although method_1 was overridden in the derived class, the

method from the base class was called, not the overridden one.

This shortcoming can be overcome by introducing the notion of virtual methods. If a method

is virtual, than for every call of it, the implementation corresponding to the class hierarchy

will not be determined at compile-time, but at execution, depending on the type of the object

on which the call was made. This property is called dynamic binding, and if a method is

determined at compile-time, we talk about static binding.

We have seen that if the virtual1.cpp program is executed, methods method_1 and

method_2 from the base class are called. But method_1 being overridden in the derived class,

we wanted the overridden method to be called instead of the one from the base class.

This can be realised by declaring method_1 as a virtual method. Thus, for each call of

method_1, the implementation of the method that will be called is determined at execution-

time and not at compile-time. So, the method method_1 is determined through dynamic

binding.

In the C++ language a method is declared virtual in the following way: in the declaration of

the class, the header of the method will start with the keyword virtual.

24

If a method is declared virtual in the base class, then the methods overriding it will be

considered virtual in all derived classes of the hierarchy.

For the above example the declaration of the base class is modified in the following way:

class base {

 public:

 virtual void method_1();

 void method_2();

};

The result of the execution becomes:

Method method_2 of the base class is called

Method method_1 of the derived class is called

So, method_1 from the derived class is called indeed.

Further we will present another example, where the neccessity of introducing virtual methods

appears. Let us define the class fraction referring to rational numbers, having as attributes the

numerator and the denominator of the fraction. The class has to have a constructor, the

default value for the numerator being 0 and for the denominator being 1, and two methods:

product, for computing the product of two fractions and multiply, for multiplying the current

object with a fraction given as parameter. Also, the fraction class has to have a method for

displaying a rational number. Using class fraction as base class, we will define the derived

class fraction_write, in which the product function will be overridden, so that besides

executing the multiplication, the operation is displayed on stdout. The multiply method will

not be overridden, but the performed operation has to be displayed on the standard output in

this case, too. File fvirt1.cpp:

#include <iostream>

using namespace std;

class fraction {

protected:

 int numerator;

 int denominator;

public:

 fraction(int numerator1 = 0, int denominator1 = 1);

 fraction product(fraction& r); //computes the product of two

 //fractions, but does not simplify

 fraction& multiply(fraction& r);

 void display();

};

fraction::fraction(int numerator1, int denominator1)

{

 numerator = numerator1;

 denominator = denominator1;

}

fraction fraction::product(fraction& r)

{

 return fraction(numerator * r.numerator, denominator * r.denominator);

}

25

fraction& fraction::multiply(fraction& q)

{

 *this = this->product(q);

 return *this;

}

void fraction::display()

{

 if (denominator)

 cout << numerator << " / " << denominator;

 else

 cerr << "Incorrect fraction";

}

class fraction_write: public fraction{

public:

 fraction_write(int numerator1 = 0, int denominator = 1);

 fraction product(fraction& r);

};

inline fraction_write::fraction_write(int numerator1, int denominator1) :

fraction(numerator1, denominator1)

{

}

fraction fractie_write::product(fraction& q)

{

 fraction r = fraction(*this).product(q);

 cout << "(";

 this->display();

 cout << ") * (";

 q.display();

 cout << ") = ";

 r.display();

 cout << endl;

 return r;

}

int main()

{

 fraction p(3,4), q(5,2), r;

 r = p.multiply(q);

 p.display();

 cout << endl;

 r.display();

 cout << endl;

 fraction_write p1(3,4), q1(5,2);

 fraction r1, r2;

 r1 = p1.product(q1);

 r2 = p1.multiply(q1);

 p1.display();

 cout << endl;

 r1.display();

 cout << endl;

 r2.display();

 cout << endl;

 return 0;

}

Executing the code we will get:

26

15 / 8

15 / 8

(3 / 4) * (5 / 2) = 15 / 8

15 / 8

15 / 8

15 / 8

We can observe that the result is not the desired one, since the multiplication operation was

displayed only once, namely for the expression r1 = p1.product(q1). In case of the

expression r2 = p1.multiply(q1) the multiplication was not displayed. This is caused by

the fact that the multiply method was not overriden in the derived class, so the method

inherited from class fraction was called. Inside multiply the method product is called, but

since this method was determined at compile-time, the one referring to class fraction was

called and not the one from the derived class fraction_write. So, the operation was displayed

only once.

The solution is, like for the previous example, to declare a virtual method, namely to declare

method product virtual. So, the declaration of the base class is modified in the following way:

class fraction {

protected:

 int numerator;

 int denominator;

public:

 fraction(int numerator1 = 0, int denominator = 1);

 virtual fraction product(fraction& r); //computes the product of two

 //fractions, but does not simplify

 fraction& multiply(fraction& r);

 void display();

};

After making these modifications, the result of the execution will be:

15 / 8

15 / 8

(3 / 4) * (5 / 2) = 15 / 8

(3 / 4) * (5 / 2) = 15 / 8

15 / 8

15 / 8

15 / 8

It can be observed that the operation was displayed twice, once for each expression. Virtual

methods, just like other methods, do not neccessarily have to be overridden in the derived

classes. If they are not overridden, the method from a superior level is inherited.

The corresponding implementation of virtual methods is determined based on some

automatically built and managed tables. Objects of classes with virtual methods contain a

pointer to this table. Because of this, managing virtual methods requires more memory and a

longer execution time.

27

1.3.4. Abstract classes

In case of a complicated class hierarchy, the base class can have some properties which we

know exist, but we can only define them for the derived classes. For example, let’s consider

the class hierarchy from Figure 1.3.

We notice that we can determine some properties that refer to the derived classes, for

example: average weight, lifespan and speed. These properties will be described using

different methods. Theoretically, average weight, lifespan and speed exists for the animal

class, too, but they are too complicated to determine, and are not important for us in such a

general context. Still, for a uniform treatment, it would be good, if these three methods were

declared in the base class and defined in the derived classes. For this purpose the notion of

pure virtual method was introduced.

Figure 1.3. Class hierarchy of animals

A pure virtual method is a method which is declared in a given class, but is not defined in it.

It has to be defined in a derived class. A pure virtual method is declared in the following

way: the regular header of the method is preceeded by the virtual keyword, and the header

ends with = 0. As its name and declaration show, a pure virtual method is a virtual method, so

the selection of the implementation of the method from the class hierarchy will be done

during the execution of the program.

Classes that contain at least one pure virtual method are called abstract classes.

Since abstract classes contain methods that are not defined, it is not possible to create objects

that belong to an abstract class. If a pure virtual method was not defined in the derived class,

than the derived class will also be abstract and it is impossible to define objects belonging to

it.

Let’s consider the above example and write a program that determines whether a dove, a bear

or a horse is fat or skinny, fast or slow and old or young, respectively. The result will be

displayed by a method of the animal class, which is not overridden in the derived classes. File

abstract1.cpp:

#include <iostream>

using namespace std;

class animal {

protected:

 double weight; // kg

28

 double age; // years

 double speed; // km / h

public:

 animal(double w, double a, double s);

 virtual double average_weight() = 0;

 virtual double average_lifespan() = 0;

 virtual double average_speed() = 0;

 int fat() { return weight > average_weight(); }

 int fast() { return speed > average_speed(); }

 int young()

 { return 2 * age < average_lifespan(); }

 void display();

};

animal::animal(double w, double a, double s)

{

 weight = w;

 age = a;

 speed = s;

}

void animal::display()

{

 cout << (fat() ? "fat, " : "skinny, ");

 cout << (young() ? "young, " : "old, ");

 cout << (fast() ? "fast" : "slow") << endl;

}

class dove : public animal {

public:

 dove(double w, double a, double s):

 animal(w, a, s) {}

 double average_weight() { return 0.5; }

 double average_lifespan() { return 6; }

 double average_speed() { return 90; }

};

class bear: public animal {

public:

 bear(double w, double a, double s):

 animal(w, a, s) {}

 double average_weight() { return 450; }

 double average_lifespan() { return 43; }

 double average_speed() { return 40; }

};

class horse: public animal {

public:

 horse(double w, double a, double s):

 animal(w, a, s) {}

 double average_weight() { return 1000; }

 double average_lifespan() { return 36; }

 double average_speed() { return 60; }

};

int main() {

 dove d(0.6, 1, 80);

 bear b(500, 40, 46);

 horse h(900, 8, 70);

29

 d.display();

 b.display();

 h.display();

 return 0;

}

We notice that, although the animal class is abstrat, it is useful to introduce it, since there are

many methods that can be defined in the base class and inherited without modifications in the

three derived classes.

1.3.5. Interfaces

The C++ language has no notion of interfaces, which exist in Java or C# languages. But any

abstract class that contains only pure virtual methods can be considered an interface.

Obviously, in this case no attributes will be declared inside the class. The animal abstract

class contains both attributes and nonvirtual methods, so it cannot be considered an interface.

Further we will introduce an abstract class, Vehicle, which contains only pure virtual

methods, and two classes derived from it. File vehicle.cpp:

#include <iostream>

using namespace std;

class Vehicle

{

public:

 virtual void Start() = 0;

 virtual void Stop() = 0;

 virtual void Go(int km) = 0;

 virtual void Stand (int min) = 0;

};

class Bicycle : public Vehicle

{

public:

 void Start();

 void Stop();

 void Go(int km);

 void Stand(int min);

};

void Bicycle::Start() {

 cout << "The bicycle starts." << endl;

}

void Bicycle::Stop() {

 cout << "The bicycle stops." << endl;

}

void Bicycle::Go(int km) {

 cout << "The bicycle goes " << km <<

 " kilometers." << endl;

}

void Bicycle::Stand(int min) {

 cout << "The bicycle stands " << min <<

 " minutes." << endl;

}

30

class Car : public Vehicle

{

public:

 void Start();

 void Stop();

 void Go(int km);

 void Stand(int min);

};

void Car::Start() {

 cout << "The car starts." << endl;

}

void Car::Stop() {

 cout << "The car stops." << endl;

}

void Car::Go(int km) {

 cout << "The car goes " << km <<

 " kilometers." << endl;

}

void Car::Stand(int min) {

 cout << "The car stands " << min <<

 " minutes." << endl;

}

void Path(Vehicle *v)

{

 v->Start();

 v->Go(3);

 v->Stand(2);

 v->Go(2);

 v->Stop();

}

int main()

{

 Vehicle *b = new Bicycle;

 Path(b);

 Vehicle *c = new Car;

 Path(c);

 delete b;

 delete c;

}

In the main function two dynamic objects of type Bicycle and Car, respectively, are declared,

and in this way, calling the Path function we will get different results, although this function

has as formal parameter only a pointer to the abstract class Vehicle.

1.4 Class diagrams and UML interactions among abjects:
Packages, classes and interfaces. Relations between classes
and interfaces. Objects. Messages

 The Unified Modelling Language (UML) [29] defines a set of modelling elements and

graphical notations associated to these elements. The modelling elements can be used for

describing any software system. Particularly, the UML language contains elements which can

be used for the object oriented systems.

31

 This section contains several basic elements used for describing the structure and

behaviour of an object oriented software system – class diagrams and interactions diagrams.

These elements correspond to the selection from [30], chapters 3 and 4.

 Before presenting the above mentioned elements, we start to show the context in which

they are used for a software system development. The main questions we have to answer are:

(A) what types of models we build, (B) when should we build the models depending on the

used development processes and (C) what is the connection between the models and the

written code.

 For briefly responding to these questions, we will give some examples related to an

application used by a cashier for recording the selling at a point of sale in a store. The

application is called POS (Point of Sale) and assumes the implementation of a single use

case, recording a sale.

A. Types of models

 Regarding the types of models we build, it is appropriate to use the concepts introduced

by model driven architecture approaches, mainly Model-Driven Architecture - MDA [31].

In the following we describe the models proposed by the MDA guide.

 CIM - Computation Independent Models. These models describe what the system

does and not how this behaviour is supplied. They are also known domain models (or

business models) and describe the problem domain. From a structural perspective, the class

diagrams are used to define the domain concepts. The interaction diagrams are rarely used

for CIM. In order to express the behaviour desired for the system, other elements are used,

such as use cases, business processes, etc – but these are not discussed in this section.

 The first model from Figure 1.4 presents an extract from the conceptual model for the

POS application. The model is built for illustrating the concepts used by the users. These

concepts are used for expressing the desired behaviour, using other modelling elements.

 PIM - Platform Independent Models. These models describe how the system is

working, independent from the possible concrete platforms in which it will be implemented.

At this level, the architectural elements will be introduced, and the class and interaction

diagrams between the objects represent two important tools for a detailed description of the

system (detailed design). Certainly, other modelling elements are also used, structural and

behavioural, but these are not discussed here – for example collaborations, state machines,

activities, etc.

 The second model from Figure 1.4 presents an extract of the PIM model for POS. Both

the CIM and PIM models contain only UML constructions (ex. Data types defined in the

UML specification) and possibly extensions of this language (platform independent).

32

Figure 1.4 Types of models

 PSM - Platform Specific Models. These models are a transformation of the PIM

models toward different chosen platforms. The architect can decide to build such a model in

order to express different used elements of the chosen platforms, for example specific data

types. The class diagrams and interaction diagrams between the objects are also used for

these models.

 The last model shown in Figure 1.4 represents a transformation of the PIM model when

implementing the system in Java. The data types from this model are Java types (ex. String,

double), and the model includes a data type from the java.sql package.

 According to the MDA guide, we define the models such that to finally generate code

to some chosen platforms. The code may be generated starting from the PIM or PSM

models. In the generation process, correspondences between the model’s elements and

elements from the chosen platform are used.

B. Development processes and CASE tools

 Different development processes indicate the use of different type of models at

different development stages.

 The model driven development processes generally subscribe to the guide [31] and

create PIM models, optionally derived from the CIM models. Then, from the PIM models,

they generate code, using optionally an intermediate PSM model. These development

processes require the use of design tools (CASE - Computer Aided Software Engineering)

which support this infrastructure for model transformation. Examples are the model driven

33

processes for service oriented applications that use platform independent

languages/extensions of UML, such as SoaML
1
.

 There exist model driven processes which are not using PIM models, but directly

the PSM models. These are based on specifications made for different platforms, such as

component based architectures which are service providers, SCA
2
.

 The more sophisticated development processes such as RUP
3
 (for large systems),

recommend the use of all CIM, PIM and PSM models, in the context of using CASE tools.

 The agile development processes , such as test driven development
4
 or model driven

agile development
5
, do not generally recommend the use of CASE tools but recommend the

use of models before start writing the code. The models are in fact sketches (written on a

paper or blackboard) and are used for communicating ideas about the system design.

 Independent of the used development process, most of the modern development tools

allow direct synchronization between the written code and the corresponding models.

This synchronization is actually between the code and the PSM models. For example, a

CASE tool which synchronizes the models with the code written in Java, does it between the

code and the PSM models according to the Java platform.

 A last and recent category of development processes which proposes the use of PIM

models and the direct and complete code generation is the category of processes based on

executable models. Nowadays, the adoption of the standard for executable UML models

(fUML - Foundational UML)
6
 is being to be finalized. According to these processes, we

expect a new development style in which will be build only models and the code will be

written in a textual language
7
 defined on the elements from these models. This way, the

PSM models and the code written in languages like Java, C++ or C# will be automatically

generated by the CASE tools.

 C. The correspondence between the models and the code

 The correspondences between the models and the code are important, as shown by (A)

and (B). If we generate code from the PIM models, or if we are using a CASE tool which

synchronizes the PSM model with the code, it is important to know what kind of elements

will be generated from the built models. Even if we are working agile and we are using

sketches (without using CASE tools), the same problem arises.

 Considering the executable models mentioned above (which are at the PIM level), in

the following sections we will discuss only the correspondences between the PIM models

and C++, Java and C# languages. The PSM models contain in addition to the PIM models

data types specific to some languages, thus the correspondences between the PSM models

and the code are the same, but there are present in models and UML extensions according to

the specific types.

1 OMG. Service Oriented Architecture Modeling Language, 2009. http://www.omg.org/spec/SoaML/
2 Open SOA. Service Component Architecture Specifications, 2007.
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
3 IBM. IBM Rational Unified Process, 2007. http://www-01.ibm.com/software/awdtools/rup/
4 Beck, K. Test-Driven Development by Example, Addison Wesley, 2003.
5 Ambler, S.W. Agile Model Driven Development (AMDD): The Key to Scaling Agile Software
Development, 2008. http://www.agilemodeling.com/essays/amdd.htm
6 OMG. Semantics Of A Foundational Subset For Executable UML Models (FUML), 2010.
http://www.omg.org/spec/FUML/
7 OMG. Concrete Syntax For UML Action Language (Action Language For Foundational UML - ALF), 2010.
http://www.omg.org/spec/ALF/

http://www.omg.org/spec/SoaML/
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www-01.ibm.com/software/awdtools/rup/

34

1.4.1 Class diagrams

 A diagram is a graphical representations (usually 2D) of the elements from a model.

The class diagrams represent the types of objects used in a system, as well as the

relationships between them. The structural elements selected in this section are (a) types of

objects: classes, interfaces, enumerations; (b) grouping of elements using packages and (c)

relationships between theses elements: associations, generalizations, realizations and

dependencies.

Figure 1.5 Conceptual model

 Figure 1.5 presents an initial conceptual model for POS. The classes are used for

identifying the concepts from a domain. If it is not relevant, the compartment for the class

attributes is hidden. The classes properties are defined through attributes and associations and

the data types for the attributes are not given.

 The conceptual models are of CIM type and are used for generating PIM models. As

the CIM models, they can not contain details regarding the attributes representation. If the

development process used does not assume the use of a CIM model (but PIM or PSM), then

the model from Figure 1.5 is a PIM or an incomplete PSM model.

 In the PIM context, the architecture of the system from the structural perspective is

described using packages (hierarchically organized) and dependencies between them – see

Figure 1.6 for POS. The packages are defined with cohesive responsibilities, such as the

interaction with the user (UI), facade over the domain (service), entities (model) and deposits

of objects or data access objects (repository, inmemory repository).

Figure 1.6 Stratified architecture

35

 The main concern when deciding the system’s architecture is to follow the SOLID
8,9

object oriented principles. The packages from Figure 1.6 are designed conform to the single

responsibility principle, according to which the objects should have a single responsibility,

and the objects with related responsibilities need to be logically grouped.

 The dependency between two software elements (A depends on B) indicate that when

an element will be modified (B), it is possible that the dependant element (A) have to be also

modified. The dependencies between the packages from Figure 1.6 respect the layered

architectures recommendation, i.e. the elements from the higher levels are dependant on the

lower levels, for example UI depends on the service and model, service depends on model

and repository, but service does not depend on the concrete implementation for the

repository, namely repository inmemory. Inverting the latest dependency follows another

SOLID principle, namely dependency inversion. Figure 1.7 shows the details regarding the

inversion of the dependencies between service and repository inmemory. Instead of

StoreService being dependant on the concrete implementation InmemorySaleRepository, the

SaleRepository interface was introduced in order to decouple these two elements. Actually,

SaleRepository abstracts the access to the Sale objects, allowing this way to replace the

repository inmemory system with another implementation, without affecting the others

packages from the system.

Figure 1.7 Layered architecture – justification of the dependencies

 At the PIM or PSM levels, the class diagrams are used to refine the entities and the

relationships between them – see Figure 1.8. These elements will be discussed in the

following sections.

8 Robert C. Martin. Design Principles and Design Patterns, 2004.
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
9 SOLID Design Principles: Single responsibility, Open-closed, Liskov substitution, Interface segregation
and Dependency inversion, http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

36

Figure 1.8 POS entities

A. Packages

The UML packages [29, 30] group elements from the model and offer a namespace for

the grouped elements. The packages may contain data types and other packages. A data type

or a package may be part of a single package.

 In terms of programming languages, the UML packages correspond to Java packages

and C++ and C# namespaces. The UML packages are referred using the resolution operator

::, as well as in C++ and C#. For example, the complete name of the UI package from Figures

1.6 or 1.7 is pos::ui.

 The class diagrams which indicate the packages of a system are used for describing its

architecture – see Figure 1.6 for the POS system. The dependencies between the packages

indicate a summary of the dependencies between the contained elements and the elements

from other packages. From an architectural perspective, a good management of these

dependencies is very important in the process of building and maintaining the system.

B. Classes

 An UML class [29, 30] represent a set of objects with the same structural elements

(properties) and behavioural elements (operations). The UML classes are data types and

correspond to application classes from Java, C++ and C# languages. A class may be declared

abstract and in this case it can not be instantiated as in Java, C++ and C#.

 An UML class may be derived from many other classes, as in C++. The use of multiple

inheritance in the model does not lead to a direct correspondence between the model and the

code in case of Java or C# languages.

 An UML class can implement many interfaces as in Java or C#. The correspondence

between the models which contain classes that implement multiple interfaces and C++ is

made through purely abstract C++ classes and multiple inheritance.

 All the classes from Figure 1.8 are concrete classes, and AbstractSaleRepository from

Figure 1.7 is abstract class (the name is written italic).

37

 The substitution principle is applicable for all the instances having a class or interface

type, as in Java, C++ and C#. This means that an instances of a class may be replaced with

instances of the derived types, without semantically altering the program.

C. Interfaces

 An UML interface [29, 30] is a data type which declares a set of operations, i.e. a

contract. A class that implement an interface need to provide the declared operations (fulfill

the contract). This concept correspond to the same Java/C# concept and to the pure abstract

classes from C++.

 SaleRepository from Figure 1.7 is an interface When the highlighting of the interface’s

methods is not relevant, the graphical notation for interfaces is the one from Figure 1.9.

Figure 1.9 Interface, enumeration and structured types

D. Enumerations and value objects

 UML enumerations [29, 30] describe a set of symbols which have no associated

values, as the same concepts may be found in C++, Java and C#.

 The structured types [29, 30] are modelled using the datatype stereotype and

correspond to C++/C# structures and primitives types from Java. The instances of these data

types are identified by their values. They are used to describe the classes properties and

correspond to value objects (the value object
10

 pattern), but they can not have identity.

E. Generalization and interface realization

 The generalization [29, 30] is a relation between a more general data type (basic) and

one more specialized (derived). This relation can be applied between two classes or two

interfaces, corresponding to the inheritance relations between classes from Java and C++/C#

and interfaces (pure abstract classes in C++), respectively

 The realization of an interface in UML [29, 30] represents a relation between class

and an interface and indicates that the class is conform to the contract specified by the

interface. These realizations correspond to interfaces implementations from Java and C# and

to inheritance in C++, respectively. See the graphical notations between

AbstractSaleRepository and SaleRepository in Figure 1.7 and Figure 1.9.

F. Properties

10 Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

38

 Properties [29, 30] represent structural aspects of a data type. The properties of a class

are introduced through attributes and associations. An attribute describes a property of the

class in its second compartment, as:

 visibility name: type multiplicity = value {properties}

 The name is compulsory, as well as the visibility which can be public (+), private (-),

protected (#) or at the package level (without specifier). The UML visibility correspond to the

access specifiers (having the same names) from Java, with the same semantics. The visibility

at the package level is not found in C++, and in C# has a correspondence through the internal

specifier from C# but this has also distribution connotations for the software elements (the

elements declared internal in C# are accessible only in the binary distribution dll or exe

which contains them).

 The other elements used for declaring a property are optional. The type of a property

can be any of: class, interface, enumeration, structured type or primitive type. The primitive

types in UML are value types [29]. UML defines the following primitive types: String,

Integer, Boolean and UnlimitedNatural. The first three primitive types are in correspondence

with the types having the same name in Java, C++ and C# languages, but:

 The String type is a class in Java and C#, the instances of String type can not be

modified, in contrast to C++ where the strings can be modified The character

encoding is not given in UML, while in Java and C# it is Unicode, and in C++ ASCII.

 The Integer type in UML is in unlimited precision, while in Java, C++ and C#

languages it has a limited domain of values..

 The multiplicity can be 1 (implicit value, when the multiplicity is not given), , 0..1

(optional), 0..* (zero or more values), 1..* (one or more values), m..n (between m and n

values, where m and n are constants, n can be *). For a property having the multiplicity m..*

we can additionally specify if:

 The values can be repetitive or not – implicitly the values are unique (i.e. set),

otherwise we explicitly specify by non-unique (i.e. container with possibly duplicate

values).

 The values can be referred or not through indices - implicitly not (i.e. collection),

otherwise we have to explicitly specify ordered (i.e. list).

Examples of properties:

 set : Integer[0..*] – set of integer values (unique)

 list : Integer[0..*] {ordered} – list with integer and distinct values (unique)

 list : Integer[0..*] {ordered, non-unique} – list of integers

 collection : Integer[0..*] {non-unique} – collection of integers

 The UML properties correspond to fields or object type variables in Java and C++,

respectively properties in C#. Interpretation difficulties are related to the properties having an

m..* multiplicity. For the above examples we can consider the following Java

correspondences (and similarly with C++/C#):

 set of integers:

1. int[] set or Integer[] set, and we will ensure through the operations that set

will contain distinct values, or more appropriate

2. java.util.Set set

 list with integer and distinct values:

1. int[] list, Integer[] list or java.util.List list, and we will ensure through the

operations that list will contain distinct values

 list of integers:

39

1. int[] list, Integer[] list, or java.util.List list

 collection of integers:

1. int[] collection, Integer[] collection, or java.util.Collection collection

 UML associations [29, 30] represent a set of tuples each tuple linking two instances of

some data types. An association is a data type which links properties of other data types.

Figure 1.10 Unidirectional associations

 Figure 1.10 (a) presents the model resulted after adding the attributes quantity and

product in the class SaleItem represented in diagram (b). The code (d) written in Java/C#

correspond to this situation. If we consider that it is more appropriate a graphical

representation for the relation between the classes SaleItem and Product, then instead of

adding product as an attribute, we use an unidirectional association from SaleItem to Product.

When the unidirectional association is added, an association is created in the model and a

property is created in the SaleItem class, having the role name, i.e. product. This way, the

code (d) corresponds to the graphical representation (c) of the model (a) which also contains

an association not shown in the figure. The unidirectional association introduce properties

in the source class, having the type of the destination class. The name of the property

coincides with the name of the association role, and the general form for defining the

properties (presented at the beginning of this section) is also applicable in this case.

 The decision of using associations instead of attributes depends on the context. For

example, when we are modelling the entities from an application we use associations for

indicating relationships between entities and we are using attributes when we describe the

entities using value/descriptive objects. Usually, association are used when we want to

emphasize the importance of the types and of the relationships between them.

 The bidirectional associations link two properties from two different classes or from

the same class. Figure 1.11 presents a bidirectional association between SaleItem and

Product, as well as the Java/C# code corresponding to this situation.

Figure 1.11 Bidirectional association

 The conceptual model contain bidirectional associations. Storing the bidirectional

associations in the PIM/PSM models can lead to an inefficient execution due to the objects

representation. A compulsory step that has to be made during the detailed analysis is the

association refinement, firstly the transformation of the bidirectional associations into

40

unidirectional ones. Figure 1.8 presents the result of refining the associations from Figure

1.5 .

 The whole-part relationships are modelled in UML using aggregations and

containments. An aggregation is an association which indicates that an object is part of

another object. For example, Figure 1.7 indicates through the aggregation between

InmemorySaleRepository and Sale that the first object stores all the objects of Sale type (the

sales are part of this deposit). A containment is an aggregation which additionally indicates

that the contained objects can be part of a single whole, for example an element of the sale

(SaleItem) from Figure 1.8 can be part of a single sale (Sale). The associations’ refinement

also includes the setting of the aggregation and containment relationships.

 As in Java, C++ and C#, we can define static or class type properties, in diagrams

these being represented through underlining.

G. Dependencies

 Between two software elements, client and supplier, a dependency [29, 30] exists if

changing definition of the supplier leads to the change of the client. For example, if a class C

sends a message to another class F, then C is dependent on F because changing the definition

of the message in F will imply changes in C regarding the way of transmission. As a general

rule, we should minimize the dependencies in the model, while keeping these elements

cohesive.

 One can explicitly indicate in UML the dependencies between any elements from the

model. But their explicit presentation can make the model hard to read. That is why, the

dependencies are presented selectively, emphasizing important dependencies and

architectural elements – see Figures 1.6 and 1.7.

H. Operations

 Operations in UML [29, 30] define the behaviour of the objects and correspond to the

methods in object oriented programming languages. Actually, the operations specify the

behaviour (represent the signature) and the body/implementation is defined by behavioural

elements such as interactions, state machines and activities – the implementations are known

as methods in UML. The syntax for specifying an operation is:

 visibility name (list-of-parameters) : returned-type {properties}

where visibility, returned-type and properties are defined as for the classes properties. In the

operation list of properties one can specify if it is only a query operation {query}, i.e. an

operation which does not modify the state of the object – implicitly, the operations are

considered commands, i.e. they modify the state of the objects. The parameters from the list-

of-parameters are separated by commas, a parameter having the following form:

 direction name: type = implicit-value,

direction can be: in, out and in-out, implicitly being in.

1.4.2 Interaction diagrams

41

 The UML interactions [29, 30] describe the behaviour of the system, indicating how

multiple participants involved in a scenario are collaborating There are more interaction

types, but in this section we will discuss only about sequence diagrams, a type of

interactions which describe the messages sent between participants.

 Usually the sequence diagrams describe a single scenario. For example, the diagram

from Figure 1.12 shows the cashier and the POS system, describing the normal flow for the

single use case discussed here, recording a sale. Such a diagram helps to identify the public

interface of the system. Starting from the use cases description, the users actions are

modelled as messages to which the system has to respond. Messages 1, 2, 4 and 6 from

Figure 1.12 indicate that system should make some computations and to respond to the user.

 The vertical bar associated to a participant represent the temporal axis. On this axis we

place the activation bar for indicating when those participant is involved in the interaction.

The messages have a name, are generally numbered and can indicate a returned response.

All the messages from the figures of this section are synchronous The interactions may

contain fragments: cycles and alternatives.

Figure 1.12 The interface of the system

 The diagrams like the one presented in Figure 1.12 may be defined in the CIM context,

before establishing an architecture. At the PIM level, once we have identified what the

system should do, we use sequence diagrams for detailing how the objects from the system

42

will collaborate, according to the responsibilities specified through the selected architecture.

Figure 1.13 presents in detail the collaboration in the case of the POS system.

 The participants from Figure 1.12 do not indicate instances of some types from the

model. This time, the main participants from Figure 1.13 are objects of type controller,

service and repository, according to the POS architecture. The diagram presents the messages

addressed to controller (1, 3, 6 and 9) because in the diagram it is not presented the user

interface element.

 As the participants are objects, the sent messages will be methods calls for the objects

to which the messages are sent. So, the diagram lead us to the identification of the objects’

methods. Figure 1.14 present the methods identified based on the interactions from Figure

1.13.

Figure 1.13 Detailed design – interactions between objects

43

Figure 1.14 Detailed design – class diagram

1.5 Lists and maps

 In the following, we present two containers commonly used in programming and these

are lists and maps. The corresponding data types are specified and also the specific

operations. For each operation in the interface of a data type, we will specify the operation in

natural language, indicating the input and the preconditions of the operation (pre), as well as

the output and the postconditions of the operation (post).

1.5.1. Lists

In common speaking, the word "list" refers to a "listing, in some order, the names of

people and objects, data, etc.." There are many examples of lists: shopping list, price list, list

of students, etc.. The order of the list can be interpreted as a kind of "connection" between list

items (after the first purchase is the second purchase after the second purchase is the third

purchase, etc.) or can be seen as being given by the index number of the item in the list (the

first purchase, the second purchase, etc). List data type that will be further defined allows

implementation in applications related to these real world situations

Therefore, we can see a list as a sequence of elements nlll ,..,, 21 of the same type

(TElement) that are in a certain order. Each element has a well established position in the

list. As a result, the position of elements in the list is essential; access, deletion and addition

can be made based on a position in the list.

A list can be seen as a dynamic collection of elements in which the order of elements

is essential. The number n of elements in the list is called the length of the list. A list of

length 0 will be called the empty list. The dynamic character of the list is given by the factt

that the list may change over time with additions and deletions l of elements to/from the list.

In the following, we will refer to linear lists. A linear list is a structure that is either

empty (has no item) or

 has a unique first element;

 has a unique last element;

 are un unic ultim element;

44

 each item in the list (except the last element) has one successor;

 each item in the list (except the first element) has one predecessor.

Therefore, in a linear list we can insert items, delete items, we can determine the

successor (predecessor) of an element, you can access an element based on its position in the

list.

A linear list is called circular if it is considered that the predecessor of the first node

is the last node and last node successor is the first node.

As defined above, each element of a linear list has a well established position in the

list. The first position in the list it is distinctive. Given a list and a position in the list, we can

identify the element on this position, the position of the predecessor and the position of the

successor element in the list (if any). Therefore, an ordering over elements positions in a list

can be established.

Position of an element in a list can be viewed in different ways:

1. given by rank (order number) item in the list. This case is similar to vectors, the

position of an item in the list is its index in the list. In such an approach, list is

seen as a dynamic vector that can access / add / delete elements to any position in

the list.

2. given by a reference to the location where the element is stored (eg.: pointer to the

location where the element is stored)

To ensure generality, we abstract the notion of position of an element in the list. We

assume that the list items are accessed via a generic position.

We say that a position p in a list is valid if it is the position of a list element. For

example, if p were a pointer to the location the list element is stored, then p is valid if it is

different to null pointer or any other address which is not the memory address of a list

element. If p were the rank (index number) of the element in the list, then p is valid if it does

not exceed the number of elements in the list.

Therefore, if we consider a linear list in which operations access / insert / delete are

made based on a generic position in list, we can define the next abstract data type.

Empty list will be denoted by .

A special position value that is not valid inside a list will be denoted by .

Abstract Data Type LIST

domain

 DList(Position; TElement) = {l | l is a list of elements of type TElement;

each element has a position of type Position}

In what follows, we will use the notation:

45

 L= D List(Position; TElement)

operations

 create (l) // initEmpty, createEmpty

 desc.: create an empty list

 pre: true

post: lL, l

 valid(l, p)

 desc.: function that verifies if a given position is valid in a list

 pre: lL, pPosition

 post: valid= true if exists an element e in list l

 and p is the position of element e

 false otherwise

addLast (l, e)

 desc.: add an element to the end of the list

pre: lL, eTElement

post: l’L, l’ is l modified by adding e at its end

addFirst (l, e)

 desc.: add an element at the beginning of a list

pre: lL, eTElement

post: l’L, l’ is l is modified by adding e as first element

addBefore (l, p, e) // insertBefore

 desc.: add an element before a given position in list

pre: lL, eTElement, pPosition, valid(l, p)

post: l’L, l’ is l updated by inserting e before position p

addAfter (l, p, e) // insertAfter

 desc.: add an element before a given position in list

pre: lL, eTElement, pPosition, valid(l, p)

post: l’L, l’ is l updated by inserting e after position p

delete (l, p, e) // remove

desc.: delete the element from the list; the element is given by its position

pre: lL, eTElement, pPosition, valid(l, p)

post: eTElement, l’L, l’ is l updated by removing the element on position

p, e is the removed element from the list l

getElement (l, p, e) // element

46

desc.: access the element on a given position

pre: lL, eTElement, pPosition, valid(l, p)

post: eTElement, e is the element on position p from l

setElement (l, p, e) // modify

descriere: modify the element on a given position in a list

pre: lL, eTElement, pPosition, valid(l, p)

post: lL, l is updated by replacing the element on position p with e

 first (l) // getFirstPosition

 desc.: function that returns the position of first element in the list

pre: lL

 post: first Position

 first = if l is empty list

 the position of the first element in l, if l is not empty

 last (l) // getLastPosition

desc.: function that returns the position of last element in the list

pre: lL

 post: last Position

 last = if l is empty list

 the position of the last element in l, if l is not empty

 next (l, p) // getNext

desc.: function that returns the position that is the next to a given position in a list

 pre: lL, pPosition, valid(l, p)

 post: next Position

 next = if p – is the last position in the list l

 the position in l that follows after p, otherwise

 previous(l, p) // getPrev

desc.: function that returns the position that is previous to a given position in a list

 pre: lL, pPosition, valid(l, p)

 post: previous Position

 previous = if p – is the first position in the list l

 the position in l that precedes p, otherwise

search (l, e)

 desc.: function that search for an element in a list

 pre: lL, eTElement

 post: search Position

 search = if le

 the first position on which e appear in list l

isIn (l, e)

47

 desc.: function that verify if an element is in a list

 pre: lL, eTElement

 post: isIn = true if le

 false otherwise

isEmpty (l) // empty

desc.: function that verify if the list is empty

 pre: lL
 post: isEmpty = true if l

 false otherwise

 size(l) // length

desc.: function that returns the number of elements in a list

pre: lL
 post: size = the number of elements in the list l

getIterator(l, i) // iterator

desc.: build an iterator over a list

pre: lL

post: i is an iterator over list l

destroy (l)

desc.: destroy a list

pre: lL

post: list l was destroyed

 We can be print a list (as any other container that can be iterated) by using the iterator

built by using the operation getIterator from list interface.

Subalgorithm print (l):

{pre: l is a list }

{post: the elements of the list are printed }

 getIterator(l, i) {get the iterator on the list l}

 While valid(i) do {while the iterator is valid }

 currentElement(i, e) {e is the current element)

 {reffered by iterator}

 @ print e {print the current element }

 next(i) {iterator refers to the next element }

 endWhile

end-print

Remark

We mention that there is no one unique style approved to specify operations. For

example, for operation addLast (of ADT List), an equivalent and also a correct specification

would be one of the following:

addLast (l, e)

 desc.: add an element to the end of the list

48

pre: lL, eTElement

post: l’L, l’ = l {e}, e is on the last position on l’

addLast (l, e)

 desc.: add an element to the end of the list

pre: lL, eTElement

post: lL, l is modified by adding e at its end and preserving all the other

elements on their positions

1.5.2. Maps

Maps are containers that contains pairs (key, value). Maps store items so they can be easily

located using keys. Basic operations on dictionaries are search, add and delete items. In a

map, keys are unique and a key has an unique associated value.

Maps have multiple applications. For example:

 Information on bank accounts: each account is an object identified by an account

number (considered the key) and additional information (account holder's name and

address, information about deposits, etc.). Additional information will be values.

 Information about telephone subscribers: each subscriber is an object identified by an

telephone number (considered the key) and additional information (name and address

of the subscriber, auxiliary information, etc.). Additional information will be values.

 Information about students: each student is an object identified by a number

(considered the key) and additional information (student name and address, auxiliary

information, etc.). Additional information will be values.

In the following, we define an Abstract Data Type Map.

We will use TKey to denote the domain of the first element in a map pair.

We will use TValue to denote the domain of the second element in a map pair and we

will add there a very special value, denoted . This special value will be used to denote no

valid values that would be of type TValue. This is similar to NULL or NIL for pointers. So:

TValue = {} the set of all possible valid values for the second element in a pair.

Abstract Data Type MAP

domain

DMap(TKey, TValue) = { m | m is a container containing pairs (k,v),

where k: TKey, v:TValue

and k – is unique in container d}

49

In what follows, we will use the notation:

 D = DMap(TKey, TValue)

operations

 create(d) // initEmpty, createEmpty

 desc.: create an empty map

 pre: true

post: dD, d is empty

 add (d, c, v) // put

 desc.: add a pair to the map

 pre: dD, cTKey, vTValue

 post: d’D, d’=d{c, v} (add pair (c, v) to the map)

 search(d, c) // searchByKey

 desc.: search for an element in the map (by key)

 pre: dD, cTKey

post: search TValue

 search = v if (c,v)d

 otherwise

remove(d, c)

 desc.: remove an element from a map (given the key)

 pre: dD, cTKey

post: remove TValue

 remove = v if (c,v)d

 otherwise

 d’ is d modified by removing the pair with key c if (c,v)d

 is unmodified otherwise

size (d)

desc.: function that returns the number of elements in a map

 pre: dD
 post: size= the number of pairs in the map d N

 isEmpty(d) // empty

desc.: function that verify if the map is empty

 pre: dD
 post: isEmpty = true if the map is empty

 false otherwise

50

 keySet (d, m) // keys

desc.: determine the set of keys in a map

pre: dD
post: mM, m is the set of keys in map d

 values (d, c) // valueMultiset

desc.: determine the collection of values in a map

pre: dD
 post: cCol, c is the collection of values in the map d

 pairs (d, m)

desc.: determine the set of pairs (key, value) in a map

pre: dD
 post: mM, m is the set of pairs (key, value) in the map d

getIterator (d, i) // iterator

 desc.: .: build an iterator over a map

 pre: d D

 post:i I, i is an iterator over map d

destroy (d)

desc.: destroy a map

 pre: d D

 post: the map d was destroyed

We can be print a map (as any other container that can be iterated) by using the

iterator built by using the operation getIterator from map interface.

Subalgorithm print (m):

{pre: m is a map }

{post: the elements of the map are printed }

 getIterator(m, i) {get the iterator on the map m }

 While valid(i) do {while the iterator is valid }

 currentElement(i, e) {e is the current element)

 {reffered by iterator}

 @ print e {print the current element }

 next(i) {iterator refers to the next element }

 endWhile

end-print

1.6 Proposed problems

I. Write a program in one of the programming languages Python, C++, Java, C# that:

51

a. Define a class B with an integer attribute b and a printing method that displays the

attribute b to the standard output.

b. Define a class D derived from B with an attribte d of type string and also a method

of printing on standard output that displays the attribute b of the base class and the

attribute d.

c. Define a function that builds a list containing: an object o1 of type B having b

equal to 8; an object o2 of type D having b equal to 5 and d equal to D5; an

object o3 of type B having b equal to -3; an object o4 of type D having b equal to 9

and d equal to D9.

d. Define a function that receives a List of objects of type B and returns a List

containing only the items that satisfy the property: b>6.

e. For data type List used in the program, write the specifications of the used

operations.

You can use existing libraries for data structures (Python, C++, Java, C#). It is not

required to implement the list operations/methods.

II. Write a program in one of the Python, C++, Java, C# languages which:

a. Defines a class B having an attribute b of type integer and a display method,

which displays the attribute b to the standard output.

b. Defines a class D derived from B having an attribute d of type string and also a

method to display on the standard output attribute b from the base class and

attribute d.

c. Define a function which builds a map which contains: an object o1 of type B

having b equal to 8; an object o2 of type D having b equal to 5 and d equal to

„D5”; an object o3 of type B having b equal to -3; an object o4 of type D having b

equal to 9 and d equal to „D9”. (the key of an object from the map is the value of

b, and the value associated to this key is the object itself.)

d. Define a function which receives a map with objects of type B and verifies

whether in the map there is an object which satisfies the property: b>6.

e. For the map abstract data type used in the program, write the specifications of the

used operations.

You can use existing libraries for data structures (Python, C++, Java, C#). It is not

required to implement the methods of the map.

III. The subject will present a class diagram and an object interaction diagram and you

will be required to write a program which corresponds to the given diagrams.

The program may be written in an object oriented programming language, ex. Python,

Java, C++ sau C#.

52

2. Databases

2.1. Relational databases. The first three normal forms of a
relation

2.1.1. Relational model

The relational model of databases was introduced by E.F.Codd in 1970 and it is the most

studied and more used model of organizing databases. Below is a brief overview of this

model.

Consider A1, A2, ..., An a set of attributes (or columns, fields, data names, etc.) and

 {?})iDom(A iD the domain of possible values of attribute Ai, where by “?” is denoted

“undefined” (null) value. “Undefined” value is used to specify if an attribute has a value

assigned or it has no value. This value does not belong to a specific data type and it could be

used in expressions together with other attribute values having different types (number, text,

date, etc.).

Using the already defined domains, we could define a relation of degree (arity) n as below:

,...21 nDDDR

and it could be considered as a set of vectors with n values, one value for each attribute Ai.

Such a relation could be stored in a table as follows:

R A1 ... Ai ... An

r1 a11 ... a1j ... a1n

...

ri ai1 ... aij ... ain

...

rm am1 ... amj ... amn

where lines represent relation elements, or tuples, or records, which are distinct,

and .,...,1,,...,1, minjDa jij Because the way of representing the elements of a relation

R is similar with a table, the relationship is called table. In order to emphasize relation (table)

name and the list of attributes we will denote the relation with:

 nAAAR ,...,, 21 .

A relation instance ([R]) is a subset of D1 X D2 X … X Dn.

A relational database is a set of relations. A database schema is the set of schemas of the

relations in the database. A database instance (state) is the set of instances of the relations in

the database.

A relational database has three parts:

1. Data (relations content) and its description;

2. Integrity constraints (to preserve database consistency);

53

3. Data management operators.

Sample 1. STUDENTS [NAME, BIRTH_YEAR, YEAR_OF_STUDY],

with the following possible values:

NAME BIRTH YEAR YEAR OF STUDY

Pop Ioan 1985 2

Barbu Ana 1987 1

Dan Radu 1986 3

 Sample 2. BOOK [AUTHO, TITLE, PUBLISHER, YEAR],

with values:

AUTHOR TITLE PUBLISHER YEAR

Date, C.J. An Introduction to Database Systems
Addison-Wesley Publishing

Comp.
2004

Ullman, J.,

Widom, J.
A First Course in Database Systems

Addison-Wesley + Prentice-

Hall
2011

Helman, P.
The Science of Database

Management
Irwin, SUA 1994

Ramakrishnan,

R.
Database Management Systems McGraw-Hill 2007

A field or a set of fields is a key for a relation if there are not two tuples can have same

values for all fields and this is not true for any subset of the key.

If is assigned one value for each attribute of the key at most one row could be indentified

having those values for key. Because all rows of a relation are distinct, one key could be

always identified (the worst case is when the key is composed by all attributes).For example

1 {NAME} could be chosen as key (case when it is not possible to have two students with

the same name in the database) and for example 2 the set of attributes {AUTHOR, TITLE,

PUBLISHER, YEAR} seems to be the only key (or a new attribute could be added – ISBN –

to uniquely identify a book record).

In general a relation may have more keys. One of them is chosen as primary key, all the

others being considered secondary keys (or key candidates). Relational database

management systems do not allow two or more rows of a relation having the same value for

(any) key. A key is an integrity constraint for a database.

 Sample 3. SCHEDULE [DAY, HOUR, ROOM, PROFESSOR, CLASS,

LECTURE],

stores weekly schedules of a faculty. There are three possible keys:

{DAY, HOUR, ROOM}; {DAY, HOUR, PROFESSOR}; {DAY, HOUR, CLASS}.

A foreign key is a set of fields in one relation R1 that is used to `refer’ a tuple in another

relation R2 (like a `logical pointer’). It must correspond to primary key of the second

relation. The two relations R1 and R2 are not necessary distinct.

54

 Sample:

CLASSES [code, profile]

PUPILS [code, name, clasa, birthdate].

For the above example there is a link between CLASSES relation (called parent relation)

and PUPILS relation (called member relation) through the equality CLASSES.Code =

PUPILS.Class. One specific class (stored in CLASSES relation) identified by its code is

linked with all pupils (stored in PUPILS relation) that belong to that class.

Using foreign keys we can store 1:n relationships between entities: one class is associated

with many pupils, and one pupil is linked to only one class.

A foreign key could be used to store m:n relationships, too.

For example, there is a m:n relationship between courses and students entities because

there are many students who attend one course and one student attend to many courses during

one semester. An m:n relationship is stored using a so called cross table (see CONTRACTS

table in the following example).

Integrity Constraints are conditions that must be true for any instance of the database.

Integrity constraints are specified when schema is defined and are checked when relations are

modified. A legal instance of a relation is one that satisfies all specified integrity constraints.

v v

R1 R2 key

A=foreign key

55

The integrity constraints are related to attributes, relations or the link between relations:

 Constraints for attributes:

o Not Null – the attribute cannot have “undefined” value assigned

o Primary Key – the current attribute is the primary key of the relation

o Unique - the current attribute is a key candidate

o Check(condition) – simple logical conditions which should be true for a consistent

database

o Foreign Key REFERENCES parent_table [(attribute_name)] [On Update action]

[On Delete action] – the current attribute is a reference to a record stored in

another relation

 Constraints for relations:

o Primary key(list of attributes) – definition of a composed primary key

o Unique(list of attributes) - definition of a composed candidate key

o Check(condition) – condition that involves more than one attribute of a relation

o Foreign Key foreign_key(attribute_list) REFERENCES parent_table

[(attribute_list)] [On Update action] [On Delete action] – defines a composed

reference to a record stored in other table

2.1.2. First three normal forms of a relation

In general, certain data can be represented in several ways through relations (in relational

model). Redundancy is at the root of several problems associated with relational schemas:

redundant storage, insert/delete/update anomalies. Integrity constraints can be used to identify

schemas with such problems and to suggest refinements.

If a relation is in a certain normal form, it is known that certain kinds of problems are

avoided/minimized. The most used normal forms today are: 1NF, 2NF, 3NF, BCNF, 4NF,

5NF. We have the following inclusion relationships between different normal forms:

If a relation is not in a certain normal form , it could be decomposed in many relations

which are in that normal form. Projection operator is used to decompose a relation and join

natural operator is used for relations composition

Definition. Given nAAAR ,...,, 21 a relation and
piii AAA ,...,,

21
 a subset of attributes,

 nAAA ,...,, 21 . The projection of relation R on α is the relation:

 ,)()(,...,,'
,...,,

21
21

piiip AAAiii RRAAAR ,

where:

5NF

4NF

BCNF

3NF

2NF

1NF

56

 ',...,,)(,...,,
2121 RaaarrRaaar

piiin

,

and all element from R' are distinct.

Definition. Given ,R , ,S two relations over the set of attributes ,, ,

 Ø, by natural join of relations R and S we obtain the relation:

 .)()(,)(,)(),(],,[

 srandSsRrsrrSR

A relation R could be decomposed in more new (sub)relations mRRR ,...,,
21 . This

decomposition is losless-join if mRRRR ...
21 , so the data stored in R is obtained from

data stored in mRRR ,...,,
21 and there are no new elements (rows) added as a result of

composing the sub-relations.

Example of a decomposition which is not lossless-join: give the relation:

StudyContracts[Student ,Professor, Course],

and two new relations obtained as results of applying the projection on StudyContracts based

on the following atttributes: SP[Student, Professor] and PC[Professor, Course]. Let’s

suppose that for the initial relation we have the following values::

R Student Professor Course

r1 s1 p1 c1

r2 s2 p2 c2

r3 s1 p2 c3

Using the projection definition we obtain the following instances for the two sub-relations of

R

SP Student Professor

r1 s1 p1

r2 s2 p2

r3 s1 p2

CD Professor Course

r1 p1 c1

r2 p2 c2

r3 p2 c3

Applying natural join between sub-relation instances we obtain the following relation::

SP*PC Student Professor Course

r1 s1 p1 c1

r2 s2 p2 c2

? s2 p2 c3

? s1 p2 c2

r3 s1 p2 c3

The resulting relation, SP*PC, contains two new rows which were not part of the initial

relation R, so the decomposition is not losless-join.

57

Observation. A simple attribute is any attribute of a relation, and a composed attribute is

a set of attributes (at least two) of the same relation.

In some real life applications it is possible to have attributes (simple or composed) with more

than one values assigned for the same element (row) of a relation. Such attributes are called

repetitive attributes.

Sample 4. Given relation:

STUDENT [NAME, BIRTHYEAR, GROUP, COURSE, MARK],

having NAME attribute as key. In this example the pair {COURSE, GRADE} is a repetitive

composed attribute. We may have the following values in this relation:

NAME BIRTHYEAR GROUP COURSE MARK

Pop Ioan 1998 221 Databases

Operation Systems

Probabilities

10

9

8

Mureşan Ana 1999 222 Databases

Operating Systems

Probabilities

Project

8

7

10

9

Sample5. Given relation:

BOOK [ISBN, AuthorNames, Title, Publisher, Year, Language, KeyWords],

with ISBN as key and the following repetitive attributes AuthorNames and KeyWords.

Repetitive attributes bring a lot of storing and maintenance issues. This is the reason why

there are solutions found to avoid their usage, but without losing data. If R[A] is a relation,

where A is the set of attributes and α is a repetitive attribute (simple or composed), then R

could be decomposed in two relations with no repetitive attributes. If C is a key of R, then the

two sub-relations of R are:

C
RCR' şi

A

RAR '' .

Sample 6. Relation STUDENT from sample 4 is decomposed in 2 relations:

GENERAL_DATA [NAME, BIRTHYEAR, GROUP],

RESULTS [NAME, COURSE, MARK].

Sample7. Relation BOOK from sample 5 is decomposed in 3 relations (BOOK relation has

2 repetitive attributes):

BOOKS [ISBN, Title, Publisher, Year, Language],

AUTHORS [ISBN, AuthorName],

KEY_WORDS [ISBN, KeyWord].

Observation. If a book does not have authors or key words assigned, than it will exist one

corresponding record in both AUTHORS and KEY_WORDS relations, but for each record

the value of the second attribute will be null. If these records are removed then we cannot

recompose the BOOK relation using natural join (we should use outer join operator).

Definition. A relation is in first normal form (1NF) if it does not contain repetitive

attributes (simple or composed).

58

Most of relational database management systems allow only creation of relations which are

in 1NF. There are systems where repetitive attributes are permitted (for instance Oracle,

where a column could be an object or a data collection).

Next two normal forms are defined based on functional dependency concept which

describes a relationship between two sets of attributes. Database designer defines the

functional dependencies for all relations in a database, having in mind the meaning of data

stored in each relation. All update, insert or remove operations executed over a relation

should preserve functional dependencies identified by designer.

Definition. Consider relation nAAAR ,...,, 21 and two sets of

attributes nAAA ,...,,, 21 . The attribute (simple or composed) is functional

dependent by the attribute (simple or composed), denoted by: , if and only if each

value of from R has associated a unique and precise value of (this association is valid

during the whole life of relation R). A particular value of could appear in many rows of R,

case when the attribute will have the same value for atose rows, which means:

'rr implies

'rr .

Observation. A functional dependency could be used as a property (restriction)

whichshould be preserved by any relation instance of a database: elements are inserted,

removed or changed for a relation only if the functional dependency is checked.

The existence of a functional dependency in a relation implies redundancy in cases where

“pairs” of the same values are stored many times in that relation. Let’s consider the following

example:

Sample 8. EXAM [StudentName, CourseName, Mark, Professor],

Where the key is {StudentName, CourseName}. Because one course is associated with only

one professor, and one professor could have many courses we could enforce the following

functional dependency: {CourseName} {Professor}.

Exam StudentName CourseName Mark Professor

1 Alb Ana Mathematics 10 Rus Teodor

2 Costin Constantin History 9 Popa Horea

3 Alb Ana History 8 Popa Horea

4 Enisei Elena Mathematics 9 Rus Teodor

5 Frişan Florin Mathematics 10 Rus Teodor

Preserving such a functional dependency inside our relation EXAM we can meet one of the

following issues:

 Extra-memory spent: the same dependences are stored many times. The link between

course Mathematics and professor Rus Teodor is stored three times in our example, and

that between History course and professor Popa Horea is stored two times.

 Update anomaly: changing a value which appears in an association implies performing

the changes in all associations that value appears (without knowing how many such

associations exists) or the database will store inconsistent data. In our example, if the

professor changes for the first row, we have to be careful of the updates for rows 4 and 5,

otherwise the initial defined functional dependency is not preserved.

59

 Insert anomaly: we cannot add a new row in a relation if we do not know the values for

all corresponding attributes (we cannot use undefined values for the attributes involved in

a functional dependency).

 Remove anomaly: removing rows from a relation we can remove associations between

attributes that cannot be restored afterwards. In our example, is rows 2 and 3 are removed,

than the association between History and Popa Horea is lost.

The above anomalies are generated by the existence of a functional dependency between sets

of attributes. We can remove these anomalies if we will preserve the attributes involved in a

functional dependency in separate relations. To achieve this, the initial relation should be

(lossless-join) decomposed in 2 or more sub-relations. Such lossless-join decomposition is

done at the design phase, when the functional dependencies are identified.

Observations. It is easy to prove the following simple properties of functional dependencies:

1. If C este is key for nAAAR ,...,, 21 , then nAAAC ,...,,, 21 .

2. If , then , called trivial functional dependency or reflexivity.

)()()()(2121 rrrr

3. If , then , with .

)()()()()()(212121 rrrrrr

4. If and , then , which is called transitivity property of functional

dependencies.

)()()()()()(212121 rrrrrr

5. If and A , then , where .

)()(
)()(

)()()()(
)()(21

21

2121

21 rr
rr

rrrr
rr

Definition. An attribute A (simple or composed) is called prime if there is a key C and AC

(C is a composed key). An attribute is non-prime if it is not included in any key of a relation.

Definition. Consider relation nAAAR ,...,, 21 şi nAAA ,...,,, 21 . Attribute is

complete functional dependent on if is functionally dependent on (so) and

it is not functionally dependent on any subset of attributes of (, is not

true).

Objsrvation. If is not complete functional dependent on (so it is dependent on a

subset of), then is a composed attribute.

Definition. A relation is in the second normal form (2NF) if:

 It is in the first normal form,

 all non-prime attributes (simple or composed) (so those which are not part of a key) is

complete functional dependent on any key of the relation.

Observation. If a relation is in the first normal form (1NF) and it is not in the second normal

form (2NF) then it has a composed key (if a relation is not in the second normal form, then

there is a functional dependency with included in one key).

60

The general decomposition process could be defined considering a relation nAAAR ,...,, 21

and a key nAAAAC ,...,, 21 . Let’s suppose that there is a non-key attribute A ,

C Ø, being functional dependent on C (is complete functional dependent

on a strict subset of key). The dependency could be handled if R is decomposed in

following two relations:

 RR' and

A

RAR '' .

In sample 8:

EXAM [StudentName, CourseName, Mark, Professor],

where the key is {StudentName, CourseName} and with functional dependency (restriction)

{CourseName} {Professor}. We deduce that Professor attribute is not complete functional

dependent on the key, so relation EXAM is not in the second normal form. This functional

dependency could be handled by decomposing EXAM in 2 sub-relations::

CATALOG [StudentName, CourseName, Mark];

COURSES [CourseName, Professor].

Sample 9. Consider the following relation for storing study contracts:

CONTRACTS [LastName, FirstName, CNP, CourseCode, CourseName].

The key of the relation is {CNP,CourseCode}. In this relation 2 functional dependencies

could be identified:

{CNP} {LastName, FirstName} and {CourseCode} {CourseName}.

To handle these functional dependencies the initial relation could be decomposed in the

following sub-relations:

STUDENTS [CNP, LastName, FirstName],

COURSES [CourseCode, CourseName],

CONTRACTS [CNP, CourseCode].

In order to define the third normal form we need to introduce the concept of transitive

dependency..

Definition. An attribute Z is transitive dependent on attribute X if Y so that XY,

YZ, where YX is not true, and Z is not included in YX .

Definition. A relation is in the third normal form (3NF) if it is in 2NF and all non-prime

attributes are not transitive dependent on any relation key.

If C is a key and an attribute transitive dependent on C, then there is an attribute for

which: C (always true, because C is a key) and . Because the relation is in 2NF,

we deduce that is complete functional dependent on C, so C . We deduce that a

relation which is in 2NF and is not in 3NF has a functional dependency like , where

 is an non-prime attribute. This dependency could be handled by decomposing the relation

R in a similar way as in case of handling dependencies for 2NF.

Sample 10. The marks obtained by students at license dissertation are stored in the following

relation::

LICENSE_DISSERTATION [StudentName, Mark, Coordinator, Department].

61

Here are stored the name of the dissertation coordinator and the department where he/she

belongs. Because in the relation we will have at most one row for each student we can

establish StudentNam as the key of the relation. Based on the meaning of the attributes of the

relation we can identify the following functional dependency:

{Coordinator} {Department}.

Having this functional dependency between the attributes of LICENSE_DISSERTATION,

the relation is not in 3NF. In order to handle the functional dependency, the relation could be

decomposed in the following two sub-relations:

 RESULTS [StudentName, Mark, Coordinator]

 COORDINTAORS [Coordinator, Department].

Sample 11. The addresses of a group of persons are stored in a relation having the following

structure:

ADDRESSES [CNP, LastName, FirstName, ZipPostal, City, Street, No].

The key of the relation is {CNP}. Because for some cities the ZipCode is defined at street

level we have the following functional dependency that holds for ADDRESSES relation:

{ZipPostal} {City}.

The existence of this functional dependency, make the relation ADDRESSES to not be in the

third normal form, so it is necessary to decompose the relation in 2 sub-relations.

Sample 12. Consider a relation that stores a schedule for student exams, as follows:

 SCHEDULE_EX [Date, Hour, Professor, Room, Group],

Having the following restrictions:

1. A student attend to at most one exam per day, so {Group, Date} is key.

2. A professor has a single exam with one group at a specific date and time, so {Professor,

Date, Hour} is key.

3. At one moment in time in a room is scheduled at most one exam, so {Room, Date, Hour}

is key.

4. A professor does not change the room in one day. Anyway, other exams can be scheduled

in the same room but at different hours, so we have the following functional dependency:

{Professor, Date} {Room}

All attributes of SCHEDULE_EX relation appear in at least one key, so there are no non-

prime attributes. Considering the definition of normal forms given so far, we can say that the

relation is in 3NF. In order to handle also the functional dependencies similar with that at

point 4 above, a new normal form is introduced:

Definition. A relation is in Boyce-Codd 3NF, or BCNF, if the attributes from the left hand

side in a functional dependency is a key, so there is no functional dependency so that

 is not key.

To handle the functional dependency identified above, we should decompose

SCHEDULE_EX table as follows:

 SCHEDULE_EX [Date, Professor, Hour, Student],

 PLAN_ROOMS [Professor, Date, Room].

62

After performing this decomposition we obtain two relations which are in BCNF.

Unfortunately, we also removed the restriction specified at point 3 above, so: {Room, Date,

Hour} is not anymore a key (part of the attributes belong to one sub-relation and the other

part belong to the second sub-relation). If this restriction is still needed, it could be checked

using a different way (direct from the application, for instance).

2.2. Querying databases using relational algebra operators

Below is a list of condition types that appear in definition of different relational operators.

1. To verify if an attribute satisfies a simple condition, it could be compared with a specific

value like:

attribute name relational_operator value

2. A relation with a single column could be viewed as a set of elements. Next condition tests

if a particular value belongs to a specific set:

attribute_name

INNOTIS

INIS
 relation_with_a_column

3. Two relations (considered as sets of records or rows) could be compared using equality,

different, inclusion or non-inclusion operators. Between two relations having the same

number of columns and with the same types for corresponding columns we can have

types of conditions:

relation

INNOTIS

INIS

 relation

4. Also, we could consider the following conditions, using boolean operators:

(condition)

NOT condition

condition1 AND condition2

condition1 OR condition2

where condition, condition1, condition2 are any conditions of type 1-4.

To describe condition type 1 we used the concept 'value', which could be one of the following

types:

 attribute_name – specifies the value of an attribute contained in the current record. If the

attribute reference is ambiguous (there are more than one relation containing an attribute

with the same name)), then we will add the relation name in front of attribute name:

relation.attribute.

 expression – an expression contains values and operator and they are evaluated base don

the current records of queried relations.

 COUNT(*) FROM relation – specifies the number of records of the specified relation.

63

 nameattributeDISTINCT

MIN

MAX

AVG

SUM

COUNT

_

 - identifies a value from a set of values based

on all records of the current relation. The value is calculated using all attribute values

specified as argument (from all records), or only the distinct values (depending on the

presence of DISTINCT word). The resulting values represent: the total number of values

(for COUNT), sum of values (for SUM, all values should be numeric), average (for AVG,

all values should be numeric), maximum value (for MAX), or the minimum value (for

MIN).

For querying relational databases we can use the following operators:

 Selection (or horizontal projection) of a relation R – returns a new relation with the same

schema as R. From R only those rows that satisfy a specific condition c will be part of the

result. Selection operator is denoted as)(Rc .

 Projection (or vertical projection) – returns a new relation which has as attributes a

subset α of the attributes of the initial relation R. The set of attributes α could be extended

to a set of expressions where are specified, besides the expressions, the names of

columns for the resulting relation. Projection operator is denoted as:
)(R .

 Cartesian product of two relations, denoted as R1×R2 , returns a new relation having all

attributes of R1 concatenated with all attributes of R2, one record in the result being

composed by one record from R1 concatenated with one record from R2.

 Union, difference and intersection of two relations: R1R2, R1 - R2, R1R2. The two

relations should have the same schema.

 There are many join operators.

Conditional join or theta join, denoted as R1 R2 – returns the records of the

Cartesian product of the two relations filtered based on a specific condition. Based on

the definition we conclude that: R1 R2=)(21 RR .

Natural join, denoted as R1R2 – returns a new relation having as attributes the union

of all attributes of the two relations, and the records are pairs of records from R1 and R2

that have the same value for the common attributes. If the two relations have schema

 21 , RR , and nAAA ,...,, 21 , then the natural join operator is computed

based on the following formula::

R1R2 =

 21 .
2

.
1

...
1

.
21

.
1

R
n

AR
n

ARandandARAR
R

Left outer join, denoted as 21 RR C , returns a new relation having as attributes the

union of attributes that belong to R1 and R2, and the records are obtained like in case of

conditional join operator (R1 c R2,) to which are added those records from R1 which are

not returned by the conditional join combined with null value assigned to all attributes

corresponding to R2.

64

r1 r2

r2

y
R1

r2

y

R2

r

Right outer join, denoted as 21 RR C , is similar with left outer join operator, but to

records from R1 c R2 are added all records from R2 that were not returned by the

conditional join combined with null value assigned to all attributes corresponding to R1.

 Division is denoted as R1R2. Let R1 have 2 set

of attributes x and y and R2 have only the set of

attributes y (y is a common set of attributes of R1

and R1). R1R2 contains all x tuples such that

for every y tuple in R2, there is an xy tuple in R1

In other words, if the set of y values associated

with an x value in R1 contains all y values in

R2, the x value is in R1R2.(see the picture)

Division is not essential op; just a useful

shorthand.

An important problem linked by the relational

algebra operators presented above is to establish an independent subset of operators. A set

of operators M is independent if removing an arbitrary operator op from M we reduce the

power of the set, in other words we can find a relation obtained by using operators from M

which cannot be obtained with operators from M - {op}.

For the query language used above and independent set is composed by the following

operators: ,,,, . All the other operators could be obtained using one of the

following rules:

)(21121 RRRRR ;

 R1 c R2=)(21 RRc ;

 2,1 RR , şi nAAA ,...,, 21 , then

R1R2 =

 21 .
2

.
1

...
1

.
21

.
1

R
n

AR
n

ARandandARAR
R ;

 Given 2,1 RR , and R3 = (null, ... , null), R4 = (null, ... , null).

21 RR C = (R1 c R2) [R1 - 21 RR C
] 3R .

21 RR C = (R1 c R2) 4R [R2 - 21 RR C
].

 If 2,1 RR , with , then rR1R2 if 212 RRr , 11 Rr so that:

rr)(1 şi

 21)(rr .

65

Based on this we deduce that r is from
)(1R . In 21)(RR

 are all

elements which have one part in
)(1R and the other part in R2. From the result

we remove R1 what remains are the elements which have one part in)1(R and

do not have the other part in
)(1R . From here we deduce:

 121121)()(RRRRRR .

To the list of relational operators enumerated so far we can add some useful statements in

solving specific problems:

 Assignment: a relation obtained as a result of an expression evaluation could be assigned

to a variable R. The assignment statement could specify also the column names for R:

R[list] := expression

 Removing duplicates from a relation:)(R

 Sorting records of a relation: (R)s{list}

 Grouping:)(}2{}1{ Rlistbygrouplist , which is an extenssion of projection operator. Records

from R are grouped based on columns of list2, and for a group of records having the same

value for list2 attributes list1 is evaluated (list1 could contain also grouping functions).

2.3. Querying relational databases using SQL (Select)

SQL (Structured Query Language) was created for relational databases management. SQL

provides statements useful to manage relational database components (like tables, indexes,

users, views, stored procedures, triggers etc.).

Short history:

 1970 - E.F. Codd formalize relational model

 1974 - at IBM (from San Jose) is defined a new language called SEQUEL

(Structured English Query Language)

 1975 – is defined language SQUARE (Specifying Queries as Relational Expressions).

 1976 - IBM defines a modified version of SEQUEL, called SEQUEL/2. After first

revision it becomes SQL

 1986 - SQL becomes ANSI (American National Standards Institute) standard

 1987 - SQL is adopted by ISO (International Standards Organization)

 1989 – extension SQL89 (or SQL1) is published

 1992 – after revision it becomes SQL92 (or SQL2)

 1999 - SQL is updated with object oriented concepts, and becomes SQL3 (or

SQL1999)

 2003 – new data types and functions are defined -> SQL2003.

SELECT statement is used for querying databases and get information based on stored data.

SELECT is the most complex and most used statement from SQL. SELECT allows

combining data from different data sources. It uses selection, projection, Cartesian product,

66

join, union, intersection and difference operators uset in relational algebra. SELECT

statement syntax is:

SELECT

...fieldASexpfieldASexp

*

[PERCENT] n TOP

DISTINCT

ALL

 FROM source1 [alias] [, source2 [alias]]...

 [WHERE condition]

 [GROUP BY field_list [HAVING condition]]

 [

tementSELECT_sta

EXCEPT

INTERSECT

 [ALL] UNION

...
DESC

ASC

nrfield

field
 BYORDER ,

DESC

ASC

nrfield

field
 BYORDER

The statement selects data from sources listed in FROM clause. For qualifying fields (if

there is ambiguity) we can use the table name or an alias (the alias is local for that SELECT

statement) defined in FROM clause after data source name. If there is an "alias" defined we

cannot use the original table name in that specific query.

A source could be:

1. a table or view from database

2. (select_statement)

3. Join_expression, as:

 source1 [alias] join_operator source2 [alias] ON link_condition

 (join_expression)

A simple condition between two data sources follows the pattern:

[alias_source1.]field1 operator [alias_source2.]field2

where operator could be: =, <>, >, >=, <, <=. The two comparison terms should belong to

different tables.

A link condition between two data sources follows the pattern:

 Simple_condition [AND simple_condition] ...

 (condition)

A join expression generates a table and has the following syntax:

 Source1

[OUTER]FULL

[OUTER]RIGHT

[OUTER]LEFT

INNER

 JOIN Source2 ON condition

67

Conditional join from relational algebra, denoted by Source1
c Source2, is specified in

SQL as Source1 INNER JOIN Surce2 ON condition, and returns the records of Cartesian

product of the two data sources that verify the condition from ON clause.

Left outer join, specified as Source1 LEFT [OUTER] JOIN Source2 ON condition,

returns a new data source having as attributes the set of attributes from both sources, and the

records are obtained as follows: to the records obtained as result of applying the conditional

join Source1
c Source2, are added those records from din Source1 which were not returned

by the conditional join combined with cu null values for all attributes corresponding to

Source2.

Right outer join, specified as Source1 RIGHT [OUTER] JOIN Source2 ON condition,

returns a new data source having as attributes the set of attributes from both sources, and the

records are obtained as follows: to the records obtained as result of applying the conditional

join Source1
c Source2, are added those records from din Source2 which were not returned

by the conditional join combined with cu null values for all attributes corresponding to

Source1.

Full outer join, specified as Source1 FULL [OUTER] JOIN Source2 ON condition, is

obtained by union the tables obtained by applying left outer join and right outer join on

Source1 and Source2 and satisfying condition.

Other join expressions:

 Source1 JOIN Source2 USING (column_list)

 Source1 NATURAL JOIN Source2

 Source1 CROSS JOIN Source2 (it returns the Cartesian product between records

belonging to Source1 and Source2)

The FROM clause allows developers to choose either a table or a result set as a source for

specified target list. Multiple sources may be entered following the FROM clause, separated

by commas. The result of performing a SELECT on several comma-delimited sources

without a WHERE or JOIN clause to qualify the relationship between the sources is that the

complete Cartesian product of the sources will be returned (similar to a CROSS JOIN). This

is a result set where each column from each source is combined in every possible

combination of rows between each other source.

Typically a WHERE clause is used to define the relationship between comma-delimited

FROM sources:

FROM source1[, source2] ... WHERE link_condition

The data sources specified in FROM clause together with the link conditions (if exist) will

generate s result set with columns obtained by concatenation of data sources columns.

The result set will contain all records stored in data sources or they can be filtered based a

filtering condition. This filtering condition is specified in WHERE clause, together with the

link condition:

WHERE link_condition AND filtering_condition)

The filtering condition from WHERE clause could be built based on the following rules:

 A simple filtering condition has one of the following formats:

68

 expression relational_ operator expression

 expression [NOT] BETWEEN minval AND maxval

to verify if the value of an expressions is in interval (between minval and maxval) or is

not in such interval (using NOT)

 field (NOT) LIKE pattern

After LIKE is a pattern (expressed by a string) which specifies a set of values.

Depending on the database management system, there are specific symbols (chars) used

in the pattern to specify “any char” or “any string”.

selection-sub

...valuevalue
INNOTexpression

It is verified if the value of expression is (or is not - using NOT) in a list of values or in a

sub-selection. A sub-selection is a result set generated by a SELECT command having

only one field – with values of the same type with the value of expression.

 field relational_ operator

SOME

ANY

ALL

 (sub-selection)

The value of the field from the left side of the operator should have the same type as the

field of sub-selection. The condition is true if the value from the left side satisfies the

relationship specified by the operator:

o with all values from sub-selection (ALL),

o with at least one value from sub-selection (for ANY or SOME).

Equivalent conditions:

"expression IN (sub-selection)" equivalent with "expression = ANY (sub-selection)"

"expression NOT IN (sub-selection)" equivalent with "expression <> ALL (sub-

selection)"

 [NOT] EXISTS (sub-selection)

The condition is true (or false in presence of NOT) if there is at least one record in sub-

selection, and false (or true in presence of NOT)if the sub-selection is void.

 A filtering condition could be:

o A simple condition

o (condition)

o not condition

o condition1 and condition2

o condition1 or condition2

A simple condition could have one of the following values: true, false, null. The condition is

evaluated with null if at least one of the operands is null. Below the evaluation of not, and,

or operators is presented for each configuration:

 true false null

not false true null

69

and True false null or true false null

true True false null true true true true

false False false false false true false null

null Null false null null true null

A SELECT statement will return a table containing all fields from all tables (if "*" appears

after SELECT), or part of the fields and expressions. Fields having the same name in

different tables could be qualified withe source table name (or the alias of the source table).

The names of fields/expressions are established automatically by the system (depending on

the generation expression), or could be explicitly specified through AS clause. In this way are

built the values of a new record in the final table.

Expressions contain operands (fields, values returned by functions) and corresponding

operators.

The final table will contain all qualifying records or just a part of them, according with the

existing predicate after SELECT clause:

 ALL – all records (default predicate)

 DISTINCT – just distinct records

 TOP n - first n records

 TOP n PERCENT - first n% records

Records from "final table" can be ascending (ASC) or descending (DESC) ordered based on

different fields values, specified in ORDER BY clause. The fields could be specified by

name or by position (field number) in the field list of SELECT command. The order of fields

in ORDER BY clause gives the priority of sorting keys.

A set of records from the “final table” could be grupped in a single record (one record will

replace a group of records). Such a group is determined by the common values of fields

which appear in GROUP BY clause. "The new table" is ascending sorted (automatically by

the system) based on the values of fields from GROUP BY. The consecutive records of the

sorted table, with the same values for all fields from GROUP BY, are replaced with one

record. The presence of this record in the final table is decided by an optional condition that

appears in HAVING clause.

We can use the following functions on the group of records created as specified before:

field
DISTINCT

ALL
AVG or AVG([ALL]) expression)

For a group of records we take all values (specifying ALL, it is the default value) or just the

distinct ones (when DISTINCT appears) of the field or numerical expressions and it is

returned the average value.

field
DISTINCT

ALL
*

COUNT

This function returns the number of records in a group (with '*'), number of values of a field

(with ALL, identical with '*'), or the number of distinct records from group (with

DISTINCT).

70

field
DISTINCT

ALL
SUM or SUM([ALL]) expression)

The sum of all or distinct values of a field or of a numerical expression is computed for each

group of records.

field
DISTINCT

ALL

MIN

MAX
 or

MIN

MAX
 ([ALL]) expression)

For each record from group it returns the maximum or minimum value of a field or a

numerical expression.

The five functions (AVG, COUNT, SUM, MIN, MAX) are called aggregation function and

they can appear in expressions which describe resulting fields or as part of conditions in

HAVING clause. Because these functions are applied to a group of records, in SELECT

command the group should be generated by a GROUP BY clause. If GROUP BY is missing

then entire “final table” is considered to be a group, so it will contain only one record.

In general, SELECT clause is not possible to refer fields which do not appear in GROUP BY

clause or which are not arguments of an aggregation function. If such fields appear, and if

there are no errors thrown by the database management system, then is chosen the value of

the field of a random record from group.

Two tables having the same number of fields (columns) and with the same type for the fields

being on the same positions could be unified in a single table, using UNION operator. The

returned table will contain all possible records (with ALL) or just the distinct ones (without

ALL). ORDER BY clause can appear just for the last SELECT statement.

Between two result sets of a SELECT statement we can use INTERSECT or EXCEPT (or

MINUS) operators.

In a SELECT command the clauses should appear in the following order: expression_list

FROM ... WHERE ... HAVING ... ORDER BY ...

A select command may be stored in database as a specific component called view, defined as:

CREATE VIEW view_name AS SELECT_command

2.4. Proposed problems

I.
a. Create a relational database, in 3NF, which is used by a software company to manage

the following information:

 activities: activity code, description, activity type;

 employees: employee code, name, list of activities, the team he/she is a member

of, the team leader;

where:

 an activity is identified by the “activity code”;

 an employee is identified by the “employee code”;

71

 an employee may be part of only one team and the team has only one leader,

 who is also an employee of the company;

 an employee may work on many activities and an activity may include many

employees.

Justify the obtained data model is in 3NF.

b. For the data model obtained at point a, write queries for the following requests, using

either relational algebra or TSQL:

b1. Return the name of all employees that have at least one activity of type “Design”

and do not work at any activity of type “Testing”.

b2. Return the name of all leaders who are in charge of teams of at least 10 employees.

II.
a. Create a relational database, in 3NF, which is used by a faculty to manage the following

information:

 disciplines: code, name, number of credits, list of students who took an exam for

that discipline;

 students: code, name, birth date, group, year of study, specialization, list of

disciplines for which an exam was taken (including the date of the exam and the

obtained grade);

Justify the obtained data model is in 3NF.

b. For the data model obtained at point a, using both relational algebra and TSQL, determine

the list of students (name, group, number of promoted disciplines) who during the year 2013

promoted more than 5 disciplines. If a student has more than one successful exam for a

discipline, then that discipline shall be counted only once.

III.

a. Create a relational database, in 3NF, which is used by a faculty to manage the following

information about the graduate students enrolled for their final license exam: the student’s

serial number, code and name of their specialization, the title of their license project, code

and name of their supervising teacher, code and name of their supervisor’s department, list of

the software resources needed for the presentation of their license project (e.g.: .NET C#,

C++, etc), list of the hardware resources needed for the presentation of their license project

(RAM 8GB, DVD Reader, etc.).

Justify the obtained data model is in 3NF.

b. For the data model built at point a, using both relational algebra and TSQL (at least one of

each), write queries to obtain the following information:

b1. List of graduates (name, title of the license project, name of the supervising teacher) for

who the supervising teacher is a member of a given department (the department is given by

name).

b2. For a given department, return the number of graduates that have a supervising teacher

from that department.

b3. List of all supervising teachers that guided students with their license project.

b4. List of all graduates that need the following two software resources: Oracle and C#.

72

3. Operating systems

3.1. The structure of UNIX file systems

3.1.1 Unix File System

3.1.1.1. UNIX Internal Disk Structure

3.1.1.1.1 Blocks and Partitions

A UNIX file system is stored either on a device such as a hard-drive or CD or on a hard-drive

partition. The hard-drive partitioning is an operation relatively independent of the operating

system stored there. Consequently, we will refer to partitions and physical devices simply as

disks.

Block 0 – boot block

Block 1 – superblock

Block 2 – i-node

…

Block n – i-node

Block n+1 – file data zone

…

Block n+m – file data zone

UNIX Disk Architecture

A UNIX file is a sequence of bytes, each byte being individually addressable. A byte can be

accessed both sequentially as well as directly. The data exchange between the memory and

the disk is done in blocks. Older systems have a block size of 512 bytes. For a more efficient

space management, newer systems use larger blocks, of sizes up to 4KB. A UNIX file system

is a structured stored on disk, and structured as shown in the image above in four block types.

Block 0 contains the operating system boot loader. This is a program dependent on the

machine architecture on which it is installed.

Block 1, the so called superblock, contains information that defines the file systems layout on

the disk. Such information is:

- The number of i-nodes (to be explained in the next section)

- The number of disk zones

- Pointers to the i-node allocation map

- Pointers to the free space map

- Disk zone dimensions

Blocks 2 to n, where n is a defined when the disk is formatted are i-nodes. An i-node is

theUNIX name for the file descriptor. The i-nodes are stored on disk as a list named i-list.

The order number of an i-node in the i-list is represented on two bytes and is called i-number.

This i-number is the link between the file and the user programs.

The largest part of the disk is reserved for file data. The space allocation for files is done

using an elegant indexing mechanism. The starting point for this allocation is stored in the i-

node.

3.1.1.2 Directories and I-Nodes

The structure of a file entry in a directory is shown in the image below:

73

File name (practically of unlimited

length

i-number

The directory entry contains only the file name and its corresponding i-node reference. An i-

node occupies usually between 64 and 128 bytes and contains the information in the table

below:

Mode File access permissions

Link count Number of directories that contain references to this i-number, which is

basically the number of links to this file

User ID Owner user ID (UID)

Group ID Owner group ID (GID)

Size The number of bytes in the file (file length)

Access time The time the file was last accessed

Modification time The time the file was last modified

i-node time The time the i-node was last modified

Block list Address list of the first few file blocks

Indirect list References to the rest of the blocks belonging to the file.

Every UNIX file system has a few individual constants, such as: block size, i-node size, disk

address size, how many initial block addresses are stored directly in the i-node and how many

references are stored in the indirect list. Regardless of these values, the storage and retrieval

principles are the same.

To exemplify this we will use values that are frequently found in popular file systems. We

will consider that a block is 512 bytes long, and that disk address is stored on 4 bytes. So, in a

block we can store 128 such addresses. We will also consider that the i-node stored directly

the addresses of the first 10 blocks of the file, and that the indirect list contains 3 elements.

Using these values, the image below shows how the i-node points to the file blocks.

74

In the file i-node there is a list of 13 entries each referring the physical blocks of the file.

 The first 10 entries contain the addresses of the first 10 512-byte blocks of the file

 Entry 11 contains the address of a block named, indirect block. This block contains the

addresses of the next 128 512-byte block of the file

 Entry 12 contains the address of a block named double indirect block. This block

contains the addresses of 128 indirect blocks, each of which contains the addresses of

128 512-byte blocks of the file.

 Entry 13 contains the address of a block named triple indirect block. This block

contains the addresses of 128 double indirect blocks, each of which in turn contains

the addresses of 128 indirect blocks, each of which contains the addresses of 128 512-

byte blocks of the file.

In the figure above we used circles to symbolize file data blocks and rectangles to

symbolize reference blocks. As it can be easily seen form the figure, the maximum

number of disk accesses for any part of the file is at most four. For small files, this

number is even lower. As long as the file is open, its i-node is loaded and present in the

internal memory. The table below shows the number of disk accesses necessary to obtain,

using direct access, any file byte, depending on the file length.

75

Maximum Length (blocks) Maximum

Length

(bytes)

Indirect

Accesses

Data

Accesses

Total

Number of

Accesses

10 5120 - 1 1

10+128=138 70656 1 1 2

10+128+128^2=16522 8459264 2 1 3

10+128+128^2+128^3=2113674 1082201088 3 1 4

More recent UNIX versions use blocks of 4096 bytes which can store 1024 reference

addresses, and i-node stores 12 direct access addresses. Under these conditions, the table

above changes as shown below:

Maximum Length (blocks) Maximum

Length (bytes)

Indirect

Accesses

Data

Accesses

Total

Number

of

Accesses

12 49152 - 1 1

12+1024=1036 4243456 1 1 2

12+1024+1024^2=1049612 4299210752 2 1 3

12+1024+1024^2+1024^3=1073741824 4398046511104

(over 5000GB)

3 1 4

3.1.2. File Types and File Systems

In a file system, the UNIX system calls handle eight types of files:

1. Normal (the usual files)

2. Directories

3. Hard links

4. Symbolic links

5. Sockets

6. FIFO (named pipes)

7. Peripheral character devices

8. Peripheral block devices

Besides these eight type there are four more entities that the UNIX system calls treat

syntactically exactly as if they were files:

9. Pipes (anonymous pipes)

10. Shared memory segments

11. Message queues

12. Semaphores

Normal files are sequences of bytes accessible either sequentially or directly using the byte’s

order number.

Directories. A directory file differs from a normal file only thorough the information it

contains. A directory contains the list of names and addresses of the files it contains. Usually

every user has a directory of its own which points to its normal files and other subdirectories.

Special files. In this category we can include, for now, the last six file types. Actually, UNIX

regards any I/O device as a special file. From a user perspective there is no difference

between the way it works with a normal disk file and the way it works with a special file.

Every directory includes the two special entries below:

 “.” (dot) it points to the directory itself

 “..” (two consecutive dots) points to the parent directory

Every file system contains a main directory named root or /.

76

Usually, every user is using a current directory attached to the user upon entering the system.

The user can change this directory (cd), can create a new directory inside the current

directory (mkdir), delete a directory (rmdir), display the access path from root to the current

directory (pwd).

The appearance of large numbers of UNIX distributers lead, inevitably, to the appearance of

many proprietary “extended file systems”: For instance,

 Solaris is using the UFS file system

 Linux uses mostly ext2 and more recently ext3

 IRIX is using XFS

 Etc.

Today’s UNIX distributions support also file systems specific to other operating systems. The

most important such file systems are listed below. The usage of these third party file systems

is transparent to the user, however users are recommended to use such file systems carefully

for operations other than reading. Modifying a Microsoft Word document from UNIX may

result in the file being unusable.

 FAT and FAT32 specific to MS-DOS and Windows 9x

 NTFS specific to Windows NT and 2000

UNIX system administrators must pay attention to the types of file sytems used and the

permissions they give to the users on them.

The tree structure principle of a file system states that any file or directory has a single

parent. Implicitly, each file or directory has a single unique path of access starting from the

root. The link between a file or directory and its parent directory will be call natural link. The

natural links are created implicitly when the file or subdirectory is created.

3.1.2.1 Hard Links and Symbolic Links

There are situations when it is useful to share a part of the directory structure among multiple

users. For instance, a database stored somewhere in the file system must be accessible to

many users. UNIX allows such an operation using additional links. An additional link allows

referring a file in different ways than the natural one. The additional links are: hard links and

symbolic links (soft).

Hard links are identical to the natural links and can be created exclusively by the system

administrator. A hard link is an entry in a directory that points to the same substructure to

which its natural link is pointing to already. Consequently, a hard link makes the substructure

appear to have two parent directories. Basically, a hard link gives a second name to the same

file. This is why when parsing a directory tree files with hard links appear duplicated. Each

duplicate appears with the number of hard links pointing to it.

For example, if there is a file named “old” and the system administrator runs the command:
ln old newlink

Then the file system will appear to have two identical files: old and newlink, each of them

being marked as having two links pointing towards it. Hard links can only be created inside

the same file system (we will give the details for this later on).

The symbolic links are special entries in a directory that point (reference) some file or

directory in the directory structure. This entry behaves as a subdirectory of the directory

where the entry was created.

In its simplest form, a symbolic link is created using the command below:

#ln –s pathInTheDirectoryStructure symbolicName

After the command above is executed, pathInTheDirectoryStructure will have an

additional link marked, and symbolicName will point (exclusively) to this path. Symbolic

77

links can be used by regular users (not only by the system administrator like the hard links)

and they can also point to paths outside the file system in which they reside.

The symbolic and hard links transform the tree structure of the file system in an acyclic graph

structure. The example above shows a simple directory structure. Capital letters A, B ,C, D,

E, F, and G are names of regular files, directories, and links. It is evidently possible for the

same name to appear multiple times in the directory structure, thanks to the hierarchical

structure of the directories which eliminate ambiguities. Regular files are marked with circles

and directories with rectangles.

The links are marked with three types of arrows:

 Continuous line – natural links

 Dashed line – link toward the same directory or the parent directory

 Dotted line – Symbolic and hard links

There are 12 nodes in the example above, both directories and files. Regarded a s a tree, in

other words considering the natural links exclusively, there are 7 branches and 4 levels.

Let us assume that the two links (dotted lines) are symbolic. To create these links one would

have to run the commands below:
cd /A
ln –s /A/B/D/G G First link
cd /A/B/D

ln –s /A/E E Second link

Let’s presume now that the current directory is B. We will parse the tree in order: directory

followed by its subordinates from left to right. When applicable, we will put on the same line,

multiple specifications of the same node. The entries that are links are underlined. The

longest 7 branches are marked with # to their right.

78

When happens when deleting multiple links? For instance, what happens when one of the

commands below get executed?
rm D/G
rm /A/G

It is clear that the file must be unaffected if deleted only by one of the specifications. For this,

the file descriptor holds a field named link counter. This has value 1 when the file is initially

created and is incremented by 1 every time a new link is created. When deleted, the counter is

decremented by 1, and if it is zero, only then the file gets deleted from the disc and the blocks

it occupied are freed.

3.2. UNIX Processes

UNIX processes: creation, system calls: cork, exec, exit, wait; pipe and FIFO

communication.

3.2.1. Main System Calls for Process Management

In this section we will present the most important system calls for working with processes:

fork, exit, wait and exec. We will start with fork, which is the system call for creating a

process.

3.2.1.1 Process creation. The fork system call

In the UNIX operating system a process is created using the fork() system call. When

functioning normally, the effect of calling it is the following: the parent process memory

image is copied in a free memory area, this copy being the newly created process, which in

the first phase is identical to the initial process. The two processes continue their execution

concurrently with the instruction following the fork() call.

The newly created process is called child process, and the process that called fork() is called

the parent process. With the exception of the different address spaces, the child process

differs from the parent process only through its process identifier (PID), its parent process

identifier (PPID), and the value returned by the fork() call. When functioning normally, fork()

return in the parent process (the process that called fork) the PID of the new child process,

and in the child process it returns 0.

79

Figure 3.1 The fork mechanism

In the image above we show the fork() mechanism, the arrows indicating the instruction

that is executed currently in the process.

If it fails, the fork() call returns value -1 si sets accordingly the errno environment

variable. The fork() system call can appear if:

 the is not enough memory to create a copy of the parent process

 The total number of processes in the system is above a maximum limit

This behavior for the fork() system call makes it easy to implement two sequences of

instructions that execute in parallel:
 if(fork() == 0) {

 /* child instructions */
 }

 else {
 /* Parent instructions */
 }

The program below shows how fork() can be used:
 int main() {
 int pid, I;

 printf(“\nProgram start:\n”);
 if((pid=fork)<0) error_sys(“Cannot execute fork()\n”);
 else if(pid == 0) { // This is the child process

 for(i=1;i<=10;i++) {
 sleep(2); // sleep 2 seconds

 printf(“\tCHILD(%d) of PARENT(%d): 3*%d=%d\n”, getpid(),
 getppid(), i, 3*i);
 }

 printf(“End CHILD\n”);
 }

 else if(pid > 0) { // This is the parent process
 printf(“Created CHILD(%d)\n”, pid);
 for(i=1;i<=10;i++) {

 sleep(2); // sleep 2 second

80

 printf(“PARENT(%d): 2*%d=%d\n”, getpid(), i, 2*i);
 }

 printf(“End PARENT\n”);
 }

 return 0;
 }

We have intentionally made it so that the child process wait more than the parent (when

doing complex calculations it is often the case that the operations of one process last longer

than those of the other). Consequently, the parent will finish the execution earlier. The results

printed on the screen are:

 Program start:

 Created CHILD(20429)
 PARENT(20428): 2*1=2

 CHILD(20429) of PARENT(20428): 3*1=3
 PARENT(20428): 2*2=4
 PARENT(20428): 2*3=6

 CHILD(20429) of PARENT(20428): 3*2=6
 PARENT(20428): 2*4=8

 PARENT(20428): 2*5=10
 CHILD(20429) of PARENT(20428): 3*3=9
 PARENT(20428): 2*6=12

 PARENT(20428): 2*7=14
 CHILD(20429) of PARENT(20428): 3*4=12

 PARENT(20428): 2*8=16
 PARENT(20428): 2*9=18
 CHILD(20429) of PARENT(20428): 3*5=15

 PARENT(20428): 2*10=20
 End PARENT

 CHILD(20429) of PARENT(1): 3*6=18
 CHILD(20429) of PARENT(1): 3*7=21
 CHILD(20429) of PARENT(1): 3*8=24

 CHILD(20429) of PARENT(1): 3*9=27
 CHILD(20429) of PARENT(1): 3*10=30

 End CHILD

3.2.1.2 Executing an external program. The exec system calls

Almost all operating systems and programming environments offer, one way or another,

mechanisms for executing a program from inside another program. UNIX offers this

mechanism through the exec* system calls. As we will see, the combined usage of fork and

exec offers great elasticity in handling processes.

The exec* system call family start a new program inside the same process. The exec system

call gets the name of an executable file, and the content of this file overwrites the existing

current process, as shown in the image below.

81

After calling exec, the instructions in the current program are not executed any longer, in

their stead being executed the instructions of the new program.

UNIX offers six exec system calls categorized by three criteria:

 The path to the executable: absolute or relative

 Environment inheritance from or creation of a new environment for the new program

 Command line arguments specification: specific list or pointer array

From the eight possible combinations generated by the three criteria above were eliminated

the two with relative path and new environment. The prototypes of the six exec function calls

are:

int execv (char* file, char* argv[]);
int execl (char* file, char* arg0, …, char* argn, NULL);
int execve(char* file, char* argv[], char* envp[]);
int execle(char* file, char* arg0, …, char* argn, NULL, char*

envp[]);
int execvp(char* file, char* argv[]);
int execlp(char* file, char* arg0, …, char* argn, NULL);

The meaning of the exec parameters is:

 file – the name of the executable file that will replace the current process. This name

must coincide with argv[0] or arg0.

 argv – is an array of pointers, ending in NULL, that contains the command line

arguments for the new program about to be executed.

 arg0, arg1, …, argn, NULL are the command line arguments of the program about to

be executed, given explicitely as strings. The last of them must be NULL as well.

 envp – is an array of pointer, also ending in NULL, that contains the string

corresponding to the new environment variables, given in the format “name=value”

3.2.1.3 System calls exit and wait

The system call
 exit(int n)

82

causes the current process to finish and the return to the parent process (the one that created it

using fork). Integer n is the exit code of the process. If the parent process does not exist any

longer, the process is moved to a zombie state and associated with the init process (PID 1).

The system calls
 pid_t wait(int *status);

 pid_t waitpid(pid_t pid, int* status, int options);

are used to wait for the termination of a process. The call to wait() suspends the execution of

the current process until a child process ends. If the chil ended before the wait() call, the call

ends immediately. Upon the completion of the wait() call, the child’s resources are all freed.

3.2.2. Communicating between processes using pipe

3.2.2.1 Pipes

The PIPE concept appeared for the first time in the UNIX system in order to allow a child

process communicate with its parent process. Usually, the parent process redirects its

standard output (stdout) towards the pipe, and the child process redirects its standard input

(stdin) to come from the pipe. Most operating systems use the operator “|” to mark this type

of connection between the operating system commands.

A UNIX pipe is a unidirectional flux of data, managed by the operating system kernel.

Basically, the kernel allocates a buffer of 4096 bytes that are managed as presented above.

The creation of a pipe is done using the system call below:

 Int pipe(int fd[2]);

The integer fd[0] is a file descriptor that can be used to read from the pipe, and fd[1] is a file

descriptor that allows writing to the pipe. After its creation, the link between the user and the

kernel created by this pipe appears as in the image below.

Obviously, a pip within a single process does not make much sense. It is essential that pipe

and fork work together. Consequently, after the pipe is created, fork should be called, and

then the link between the two processes with the kernel looks as follows:

83

The unidirectional communication through pipe left entirely to be insured by the developer.

To insure this, the developer should close the unnecessary pipe ends before starting the

communication.

 The parent process should call close(fd[0])

 The child should call closed(fd[1])

If the desired direction of communication is reversed, then the operations above should be

reversed too: the parent will execute close(fd[1]0 and the child will execute close(fd[0]).

3.2.2.2 Example: implement who|sort through pipe and exec

Let’s consider the following shell command:

 $who|sort

We will present how the link between the two commands is created through pipe. The parent

process (which replaces the shell process) creates two child processes, and these two redirect

their input and outputs accordingly. The first child process executes the command who, and

the second child process executes the command sort, while the parent waits for their

completion. The source code is presented in the program below.

//whoSort.c

//Execute who | sort

#include <unistd.h>

int main (){

 int p[2];

 pipe (p);

 if (fork () == 0) { // First child

 dup2 (p[1], 1); //redirect standard output

 close (p[0]);

 execlp ("who", "who", 0);

 }

 else if (fork () == 0) { // second child

 dup2 (p[0], 0); // redirect standard input

 close (p[1]);

 execlp ("sort", "sort", 0);//execute sort

 }

 else { // Parinte

 close (p[0]);

 close (p[1]);

84

 wait (0);

 wait (0);

 }

 return 0;

}

Note: To better understand the code above, the reader should learn about the system call dup2

from the UNIX manual pages. Here dup2 takes as a parameter the pipe descriptor.

3.2.3. Communicating between processes with FIFO

3.2.3.1 The Concept of FIFO

The main disadvantage of using pipe in UNIX is that it can only be used be related processes:

the processes communicating through pipe must be descendants of the process creating the

pipe. This is necessary so that the pipe descriptors are inherited by the child process created

with fork.

UNIX System V (around 1985) introduced the concept of FIFO (named pipes). This is a

unidirectional flux of data accessed through a file stored on disk in the file system. The

difference between pipe and FIFO is that FIFO has a name and is stored in the file system.

Because of this, a FFO can be accessed by any processes, not necessarily having a common

parent. However, even if the FIFO is stored on disk, no data is stored on disk at all, the data

being handled in system kernel buffers.

Conceptually, pipe and FIFO are similar. The essential differences are the following:

 The pipe is managed in the RAM memory part managed by the kernel, while for FIFO

this is done on the disk

 All the processes communicating through pipe must be descendants of the creating

process, while for FIFO this is not necessary

The creation of a FIFO is done using one of the system calls below:

int mknod(char* name, int mode, 0);

int mkfifo(char* name, int mode);

or using the shell commands below:

 $ mknod name p

 $mkfifo name

 The “name” parameter is the name of the file of type FIFO

 The “mode” argument gives the access permissions to the FIFO file. When using

mknod, mode must specify the flag S_IFIFO, besides the access permission

(connected through the bitwise-OR operator |). This flag is defined in <sys/stat.h>

 The last parameter of the mknod system call is ignored, and that is why we put there a

0.

 When using the command mknod, the last parameter must be “p” to tell the command

to create a named pipe

The two function calls above, although specified by POSIX, are not both system calls in all

UNIX implementations. FreeBSD implements them both as system calls, but in Linux and

Solaris only mknod is a system call while mkfifo is a library function implemented using

mkfifo. The two shell commands are available on most UNIX implementations. In older

85

UNIX distributions the commands are only accessible to the superuser, but starting with

UNIX System 4.3 they are also available to regular users.

To delete a FIFO, one can use either the “rm” shell command or the C function call “unlink”.

One a FIFO is created, it must be open for read and write, using the system call “open”. The

functioning of this, its effects and the effects of the O_NDELAY flag given to the “open”

system call are presente din the table below.

Operation Without the O_NDELAY

flag

With the O_NDELAY flag

Open FIFO read-only, but

there is no process opening it

for writing

Wait until there is a process

opening it for writing

Return immediately without

signaling any error

Open FIFO write-only but

there is no process opening it

for reading

Wait until there is a process

opening it for reading

Return immediately and set

errno to ENXIO

Read from FIFO or pipe

when there is no data

available

Wait until there is data in the

pipe or FIFO, or until there is

no process opening it for

writing. Return length of the

read data, or 0 if there is no

process left writing.

Return immediately with

value 0

Write to FIFO or pipe when

it is full

Wait until there is space

available for writing, and

write as much as possible.

Return immediately with

value 0

3.2.3.2 Example: Client/Server communication through FIFO

The client/server application model is classic. In the following program we will present a

sketch of client/server application communicating through FIFO. To insure bi-directional

communication we will use two FIFOs. The specific logic of the application is not given and

is replaced by calls to functions client(int in, int out) and server(int in, int out). Each of them

gets the file descriptors as parameters, and they sue these to communicate with their partner.

The two programs rely on the FIFOs to be created ahead of time with Shell commands and

deleted with shell commands afterwards.

Server program:
#include <sys/types.h>

#include <sys/stat.h>

#include <sys/errno.h>

#include <stdio.h>

#include <unistd.h>

#include "server.c"

#define FIFO1 "/tmp/fifo.1"

#define FIFO2 "/tmp/fifo.2"

int main() {

 int readfd, writefd;

86

- - - - - - - - - - - - - -

 readfd = open (FIFO1, 0));

 writefd = open (FIFO2, 1));

 for (; ;) { // infinite loop for waiting requests

 server(readfd, writefd);

 }

 - - - - - - - - - - - - - -

 close (readfd);

 close (writefd);

 return 0;

}

Client program:
#include <sys/types.h>

#include <sys/stat.h>

#include <sys/errno.h>

#include <stdio.h>

#include <unistd.h>

#include "client.c"

extern int errno;

#define FIFO1 "/tmp/fifo.1"

#define FIFO2 "/tmp/fifo.2"

int main() {

 int readfd, writefd;

 - - - - - - - - - - - - - -

 writefd = open (FIFO1, 1));

 if ((readfd = open (FIFO2, 0));

 client(readfd, writefd);

 - - - - - - - - - - - - -

 close (readfd);

 close (writefd);

 return 0;

}

3.3. Command File Interpreters

3.3.1. Shell Command Interpreter Functioning

A command interpreter (shell) is a special program that provides an interface between the

user and the UNIX operating system (kernel). From this perspective, the shell interpreter can

be regarded in two ways:

 Command language that acts as an interface between the user and the system. When a

user opens a working session, a shell is started implicitly and acts as a command

interpreter. The shell displays to the standard out (usually a terminal) a prompt,

offering the user means for running commands.

 Programming language that has as base elements the UNIX commands (semantically

similar to the assigning instruction in other programming languages). The primitive

element for conditions is the exit code of the last command. Zero means TRUE and

any other value means FALSE. Shells have the notions of variable, constant,

expression, control structure, and subprogram. The expressions used by Shell are

mostly character strings. The syntactical aspects were reduced to a minimum.

Upon start, a shell stays active until specifically closed, and follows the algorithm below:

87

While(session is not closed)

 Display prompt;

 Read command line;

 If (command line ends with ‘&’) then

 Create a process that executes the command

 Do not wait for its execution to complete

 Else

 Create a process that executes the command

 Wait for its execution to complete

 End If

End While

The algorithm above emphasizes two modes in which a command can be executed:

 Mode foreground – visible execution. The shell waits for the execution to finish ad

then displays a prompt again. This is the implicit execution mode for any UNXI

command.

 Mode background – hidden execution. The shell executed the command but does of

wait for it to finish, and displays the prompt immediately after it started, offering the

user the possibility to run another command. In order to run a command in the

background, one must end it with ‘&’

In a UNIX session, one can run any number of background commands but only one

foreground command. For example, the script below runs two command in the background,

one for copying a file (cp) and one for compiling a C program (gcc), and one command in

foreground for editing a text file (vi).
 cp A B &

 gcc x.c &

 vi H

3.3.2. Shell Programming

3.3.2.1 The SH programming language

In this section we will present the SH language, the simplest of the UNXI shells. We will

discuss the main syntactical categories. The semantics and functionalities of each such

category are easy to infer from the context.

We will rely on the following conventions for describing the grammar of the SH language.

Please note that these conventions are used exclusively for specifying the grammar. Similar

constructs will appear later on file specifications and regular expressions, but they will have

different meaning.

 A grammatical category can be defined through one or more alternative rules. The

alternatives are written one on each line, starting on the line next to the category’s

name, as follows

GrammaticalCategory:

 Alternative 1

 …

 Alternative N

 []? Means that the expression between parentheses can appear at most once

 []+ Means that the expression between parentheses can appear at least once

88

 []* Means that the expression between parentheses can appear zero or more times

The image below presents the SH language syntax is described at a higher level (without

entering into too many details), using the conventions above. The meaning of some of the

syntactical elements in the image below is:

 word: sequence of characters not including blanks (space or tab)

 name: sequence of characters that starts with a letter and continues with letters, digits

or _ (underscore)

 digit: the ten decimal digits (0, …, 9)

command:

 basicCommand

 (cmdList)

 { cmdList }

 if cmdList then cmdList [elif cmdList then cmdList]* [else cmdList

]? fi

 case word in [word [| word]*) cmdList ;;]+ esac

 for name do cmdList done

 for name in [word]+ do cmdList done

 while cmdList do cmdList done

 until cmdList do cmdList done

basicCommand:

 [element]+

cmdList:

 pipedChain [separator pipedChain]* [end]?

pipedChain:

 command [| command]*

element:

 word

 name=word

 >word

 <word

 >>word

 <<word

 >&digit

 <&digit

 <&-

 >&-

separator:

 &&

 ||

 end

end:

 ;

 &

An SH command can have any of the nine forms presented above. One of the ways to define

it is basicCommand, where a basicCommand is a sequence of elements, and element being

defined in any of ten possible ways. A pipedChain is either one command or a sequence of

commands connected through the special character ‘|’. Finally, cmdList is a sequence of

pipedChains separated and possibly terminated with special characters.

89

The grammar described above makes it evident that SH accepts constructs without any

semantics. For instance, command can be a basicCommand, which can contain a single

element consisting of >&-;. Such input is accepted by SH from a syntactical point of view,

although it does not have any semantic meaning.

The SH shell has the following thirteen reserved words:
 if then else elif fi

 case in esac

 for while unti do done

The alternative if and case structures are closed by fi respectively esac, which are obtained by

mirroring the opening reserved word. In the case of the repetitive structures, the ending is

marked by the word done.

We are closing this section by presenting the syntax of a few reserved constructs, as well as a

few characters with special meaning in the SH shell.

a) Syntactical constructs

| connect through pipe

&& logical AND connection

|| logical OR connection

; separator/command ending

;; case delimiter

(), {} command grouping

< << input redirection

> >> output redirection

&digit &- standard input or output specification

b) Patterns and generic names:

* any sequence of characters

? any character

[…] match any character in …

Note: these patterns must not be confused with the grammar conventions presented in the

beginning of this section.

3.4. Proposed Problems

I.

a. Describe briefly the functioning of the fork system call and the values it can return.

b. What will print to the screen the program fragment below, considering that the fork system

call is successful? Justify your answer.
int main() {

 int n = 1;

 if(fork() == 0) {

 n = n + 1;

 exit(0);

 }

 n = n + 2;

 printf(“%d: %d\n”, getpid(), n);

 wait(0);

 return 0;

90

}

c. What will print to the screen the shell script fragment below? Explain the functioning of

the first three lines of the fragment.

1 for F in *.txt; do

 K=`grep abc $F`

 if [“$K” != “”]; then

 echo $F

 fi

done

2

3

4

5

6

II.

a. Consider the code fragment below. What lines will it print to the screen and in what order,

considering that the fork system call is successful? Justify your answer.
int main() {

 int i;

 for(i=0; i<2; i++) {

 printf("%d: %d\n", getpid(), i);

 if(fork() == 0) {

 printf("%d: %d\n", getpid(), i);

 exit(0);

 }

 }

 for(i=0; i<2; i++) {

 wait(0);

 }

 return 0;

}

b. Explain the functioning of the shell script fragment below. What happens if the file

report.txt is missing initially? Add the line of code missing for generating the file report.txt

more report.txt

rm report.txt

for f in *.sh; do

 if [! -x $f]; then

 chmod 700 $f

 fi

done

mail -s "Affected files report" admin@scs.ubbcluj.ro <report.txt

91

4. General bibliography

1. ***: Linux man magyarul, http://people.inf.elte.hu/csa/MAN/HTML/index.htm

2. A.S. Tanenbaum, A.S. Woodhull, Operációs rendszerek, 2007, Panem Kiadó.

3. Alexandrescu, Programarea modernă in C++. Programare generică si modele de

proiectare aplicate, Editura Teora, 2002.

4. Angster Erzsébet: Objektumorientált tervezés és programozás Java, 4KÖR Bt, 2003.

5. Bartók Nagy János, Laufer Judit, UNIX felhasználói ismeretek, Openinfo

6. Bjarne Stroustrup: A C++ programozási nyelv, Kiskapu kiadó, Budapest, 2001.

7. Bjarne Stroustrup: The C++ Programming Language Special Edition, AT&T, 2000.

8. Boian F.M. Frentiu M., Lazăr I. Tambulea L. Informatica de bază. Presa Universitară

Clujeana, Cluj, 2005

9. Boian F.M., Ferdean C.M., Boian R.F., Dragoş R.C., Programare concurentă pe

platforme Unix, Windows, Java, Ed. Albastră, Cluj-Napoca, 2002

10. Boian F.M., Vancea A., Bufnea D., Boian R.,F., Cobârzan C., Sterca A., Cojocar D.,

Sisteme de operare, RISOPRINT, 2006

11. Bradley L. Jones: C# mesteri szinten 21 nap alatt, Kiskapu kiadó, Budapest, 2004.

12. Bradley L. Jones: SAMS Teach Yourself the C# Language in 21 Days, Pearson

Education,2004.

13. Cormen, T., Leiserson, C., Rivest, R., Introducere în algoritmi, Editura Computer

Libris Agora, Cluj, 2000

14. DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley,

2004.

15. Eckel B., Thinking in C++, vol I-II, http://www.mindview.net

16. Ellis M.A., Stroustrup B., The annotated C++ Reference Manual, Addison-Wesley,

1995

17. Frentiu M., Lazăr I. Bazele programării. Partea I-a: Proiectarea algoritmilor

18. Herbert Schildt: Java. The Complete Reference, Eighth Edition, McGraw-Hill, 2011.

19. Horowitz, E., Fundamentals of Data Structures in C++, Computer Science Press,

1995

20. J. D. Ullman, J. Widom: Adatbázisrendszerek - Alapvetés, Panem kiado, 2008.

21. ULLMAN, J., WIDOM, J., A First Course in Database Systems (3rd Edition),

Addison-Wesley + Prentice-Hall, 2011.

22. Kiadó Kft, 1998, http://www.szabilinux.hu/ufi/main.htm

23. Niculescu,V., Czibula, G., Structuri fundamentale de date şi algoritmi. O perspectivă

orientată obiect., Ed. Casa Cărţii de Stiinţă, Cluj-Napoca, 2011

24. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 2007,

http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html

25. Robert Sedgewick: Algorithms, Addison-Wesley, 1984

26. Simon Károly: Kenyerünk Java. A Java programozás alapjai, Presa Universitară

Clujeană, 2010.

27. Tâmbulea L., Baze de date, Facultatea de matematică şi Informatică, Centrul de

Formare Continuă şi Invăţământ la Distanţă, Cluj-Napoca, 2003

28. V. Varga: Adatbázisrendszerek (A relációs modelltől az XML adatokig), Editura Presa

Universitară Clujeană, 2005, p. 260. ISBN 973-610-372-2

29. OMG. UML Superstructure, 2011.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

30. Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling

Language (3rd Edition). Addison-Wesley Professional, 2003.

http://www.szabilinux.hu/ufi/main.htm
http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

92

31. OMG. MDA Guide Version 1.0.1, 2003. http://www.omg.org/cgi-bin/doc?omg/03-06-

01.pdf

