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Software defect prediction

Identifying the software entities (classes, modules, methods,
functions, etc.) that are defective in a new version of a
software system

Relevance:

• improvement of software quality

• ease software maintenance and evolution
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Proposed study

Investigate the relevance of source code representations
automatically learned using pre-trained language models.

Contributions

1 examining the discriminating power of extracted
BERT-based embeddings in the context of software defect
prediction

2 analysis of the capacity of natural language patterns to
discriminate between defective and non-defective instances

3 novel evaluation strategy
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Research questions

RQ1 What is the relevance of the programming
language-specific information learned by source code-based
pre-trained models compared to the features encoded by
natural-language based pre-trained models in a task of
SDP?

RQ2 To what extent does the use of deep semantic and
contextual features of the source codes extracted using
pre-trained BERT-based language models improve the
performance of software defect predictors compared to the
semantic features learned by natural language-based
models such as doc2vec and LSI?
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Semantic features used for SDP

• Abstract Syntax Trees-based representations
[WLT16, WLNT18, MHX+20, DPN+19]

• graph-based representations [PLNB17]

• token embeddings [HYLZ18, ULA+22] and document
embeddings [MTC22]
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Classification models

• CNN [MHX+20, PLNB17]

• LSTM, BiLSTM [DPN+19, MVAK+20, ULA+22, LL21]

• DBN [WLT16, WLNT18]

• BERT fine-tuning [PLX21]
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Case study

The Apache Calcite data set is used [BCRH+18].

• 16 versions (1.0.0 - 1.15.0)
• ground truth labels for all included application classes:

• + = defective
• − = non-defective

• Data imbalance: defective rate varies from 0.033 (version
1.15.0) to 0.166 (version 1.0.0)



A study on
the relevance
of semantic
features
extracted
using

BERT-based
language
models for

enhancing the
performance
of software

defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and
discussion

Conclusions

Formalization of the SDP problem

Formalization as a supervised binary classification problem.

• an object-oriented software system S = {c1, c2, . . . , cn}
consisting of software entities (i.e. application classes)

• software entities characterized by m features: f1, . . . fm →
each application class ci , 1 ≤ i ≤ n is represented by a
high dimensional numerical vector ci = (ci1, . . . , cim),
where cij (∀1 ≤ j ≤ m) is the value of the feature fj
computed/learned for the application class ci .

• GOAL: predict if a certain software entity is likely to
belong to the + or − target class
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Data representation

Source code embeddings obtained using 2 BERT-based models:
RoBERTa-base (a natural language model) &
CodeBERT-base-MLM (a programming language model).

Feature extraction approach

1 Remove comments, documentation

2 Tokenize source code files (maximum length = 512,
padding and truncation applied)

3 Extract last hidden layer representations from BERT
model (512x768)

4 Apply mean pooling to obtain a representation for the
entire input sequence
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The SDP classifier

The SDP classifier used is based on an artificial neural network
(ANN).

• architecture: 768 (input) - 128 - 32 - 16 - 1 (output)

• hidden layers: ReLU activation function

• output layer: sigmoid activation function

• to account for data imbalance: class weights

• early stopping criterion based on AUPRC value on the
validation set
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Training & classification

Follow the historical evolution of the Calcite software and
assess the real-life defect prediction capabilities of the classifier.

• train ANN on the application classes from versions 0..k
• 80% will be used for training
• 20% will be used for validation

• test on version k + 1 (∀k , 0 ≤ k ≤ 14).
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Testing & evaluation: Evaluation

After classification, the TP (true positive), TN (true negative),
FP (false pos-
itive) and FN (false negative) are reported in a confusion matrix.

Metrics used:
• PPV (precision for the positive class) = TP

TP+FP

• POD (probability of detection) = TP
TP+FN

• Spec (specificity or true negative rate) = TN
TN+FP

• FAR (false alarm ratio) = FP
TP+FP

• CSI (critical success index) = TP
TP+FN+FP

• AUC (Area under the ROC curve) = POD+Spec
2

• MCC (Matthews Correlation Coefficient) =
TP·TN−FP·FN√

(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)

• F1 (F-score for the positive class) = 2·PPV ·POD
PPV+POD

.
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Results (I)
Version Model used for TP FP TN FN PPV (↑) POD (↑) Spec (↑) FAR (↓) CSI (↑) AUC (↑) MCC (↑) F1 (↑)

k code embedding

RoBERTa 50 136 854 63 0.269 0.442 0.863 0.731 0.201 0.653 0.247 0.334
1.0.0 CodeBERT-MLM 69 97 893 44 0.416 0.611 0.902 0.584 0.329 0.756 0.435 0.495

RoBERTa 109 60 922 17 0.645 0.865 0.939 0.355 0.586 0.902 0.775 0.739
1.1.0 CodeBERT-MLM 100 24 958 26 0.806 0.794 0.976 0.194 0.667 0.885 0.753 0.800

RoBERTa 98 43 960 14 0.695 0.875 0.957 0.305 0.632 0.916 0.681 0.775
1.2.0 CodeBERT-MLM 106 88 915 6 0.546 0.946 0.912 0.454 0.530 0.929 0.643 0.693

RoBERTa 100 72 932 23 0.581 0.813 0.928 0.419 0.513 0.871 0.643 0.678
1.3.0 CodeBERT-MLM 105 136 868 18 0.436 0.854 0.865 0.654 0.405 0.859 0.546 0.577

RoBERTa 87 112 961 16 0.437 0.845 0.896 0.563 0.405 0.870 0.558 0.576
1.4.0 CodeBERT-MLM 101 312 761 2 0.245 0.981 0.709 0.755 0.243 0.845 0.409 0.391

RoBERTa 99 113 973 8 0.467 0.925 0.896 0.533 0.450 0.911 0.614 0.621
1.5.0 CodeBERT-MLM 90 68 1018 17 0.570 0.841 0.937 0.430 0.514 0.889 0.656 0.679

RoBERTa 109 90 1034 19 0.548 0.852 0.920 0.452 0.500 0.886 0.639 0.667
1.6.0 CodeBERT-MLM 93 45 1079 35 0.674 0.727 0.960 0.326 0.538 0.843 0.664 0.699

RoBERTa 71 125 1075 30 0.362 0.703 0.896 0.638 0.314 0.799 0.448 0.478
1.7.0 CodeBERT-MLM 95 113 1087 6 0.457 0.941 0.906 0.543 0.444 0.923 0.618 0.615

RoBERTa 81 155 1065 9 0.343 0.900 0.873 0.657 0.331 0.886 0.509 0.497
1.8.0 CodeBERT-MLM 82 127 1093 8 0.392 0.911 0.896 0.608 0.378 0.904 0.557 0.548

RoBERTa 81 166 1060 3 0.328 0.964 0.865 0.672 0.324 0.914 0.519 0.489
1.9.0 CodeBERT-MLM 80 114 1112 4 0.412 0.952 0.907 0.588 0.404 0.930 0.593 0.576

RoBERTa 61 91 1160 19 0.401 0.763 0.927 0.599 0.357 0.845 0.515 0.526
1.10.0 CodeBERT-MLM 61 73 1178 19 0.455 0.763 0.942 0.545 0.399 0.852 0.556 0.570

RoBERTa 60 95 1239 21 0.387 0.741 0.929 0.613 0.341 0.835 0.498 0.508
1.11.0 CodeBERT-MLM 69 182 1152 12 0.275 0.852 0.864 0.725 0.262 0.858 0.435 0.416

RoBERTa 47 156 1066 6 0.232 0.887 0.872 0.768 0.225 0.880 0.414 0.367
1.12.0 CodeBERT-MLM 48 142 1080 5 0.253 0.906 0.884 0.747 0.246 0.895 0.442 0.395

RoBERTa 42 107 1148 11 0.282 0.792 0.915 0.718 0.263 0.854 0.439 0.416
1.13.0 CodeBERT-MLM 42 108 1147 11 0.280 0.792 0.914 0.720 0.261 0.853 0.437 0.414

RoBERTa 42 157 1150 3 0.211 0.933 0.880 0.789 0.208 0.907 0.412 0.344
1.14.0 CodeBERT-MLM 40 152 1155 5 0.208 0.889 0.884 0.792 0.203 0.886 0.397 0.338

Table: Experimental results. For each testing case (the SDP classifier trained
on all Calcite releases from 0 to k, then tested on version k + 1) and two code
embeddings (generated using RoBERTa and CodeBERT-MLM), the obtained
confusion matrix and the metrics values are provided.
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Discussion (I)

• good performance of the SDP classifier for the defect
class for most test configurations

• classifier trained on CodeBERT-MLM representations
outperforms the one trained on RoBERTa representations

• RoBERTa-based model achieved comparable results
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Results (II)

Difficulty
Model used to k (Training data from Calcite release 1.k.0. testing data from Calcite release 1.k+1.0)
learn features 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Defect class
doc2vec+LSI [MTC22] 0.684 0.681 0.692 0.686 0.690 0.687 0.688 0.694 0.688 0.687 0.690 0.691 0.696 0.691 0.692

CodeBERT-MLM 0.436 0.372 0.378 0.371 0.363 0.340 0.318 0.336 0.350 0.341 0.338 0.351 0.352 0.350 0.343

Non-Defect class
doc2vec+LSI [MTC22] 0.095 0.089 0.088 0.085 0.079 0.076 0.076 0.072 0.068 0.064 0.062 0.060 0.057 0.055 0.052

CodeBERT-MLM 0.093 0.087 0.081 0.081 0.072 0.062 0.058 0.055 0.052 0.052 0.051 0.047 0.047 0.047 0.044

Overall
doc2vec+LSI [MTC22] 0.174 0.164 0.160 0.156 0.148 0.143 0.142 0.137 0.130 0.124 0.120 0.117 0.112 0.108 0.103

CodeBERT-MLM 0.139 0.123 0.117 0.115 0.105 0.092 0.086 0.084 0.082 0.079 0.078 0.075 0.073 0.072 0.068

Table: Difficulty values for all fifteen testing configurations, for two representations: based on doc2vec+LSI, and learned by
CodeBERT-MLM.

Figure: Classification improvement of CodeBERT-MLM representations over doc2vec+LSI representations in all testing
configurations.



A study on
the relevance
of semantic
features
extracted
using

BERT-based
language
models for

enhancing the
performance
of software

defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and
discussion

Conclusions

Discussion (II)

Same training & testing methodology used for the doc2vec
and LSI representations introduced in [MTC22].

• significant differences in computed difficulty values for the
positive (defect) class

• overall descending trend: highest difficulty obtained for
testing configuration with k = 0

• considerable improvements observed when using
BERT-based features as opposed to doc2vec+LSI features
[MTC22]
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Conclusions

• CodeBERT-MLM model, trained on source codes,
provided more effective representations for detecting
software defects than a model that focuses on natural
language, such as RoBERTa

• the semantic and contextual features extracted by the
pre-trained CodeBERT-MLM model better at
discriminating between defective and non-defective source
codes, compared to the features encoded in the source
code semantic representations learned by doc2vec and
LSI (two natural language-based models that learn only
from the analyzed input source codes)

• future work: add comments from the source code and/or
other software artifacts
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