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Introduction

Software defect prediction

Identifying the software entities (classes, modules, methods,
functions, etc.) that are defective in a new version of a

software system

Relevance:
® improvement of software quality
® case software maintenance and evolution
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of semantic Proposed study
features
extracted
using
BERT-based
language
models for Investigate the relevance of source code representations
enhancing the
; ) . e
e automatically learned using pre-trained language models.
defect
classifiers
A. Briciu, G. Contributions
Czibula and
M. Lupea - a oo .
@ examining the discriminating power of extracted
Introduction BERT-based embeddings in the context of software defect
prediction

@® analysis of the capacity of natural language patterns to
discriminate between defective and non-defective instances

© novel evaluation strategy
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Introduction RQ2

Research questions

What is the relevance of the programming
language-specific information learned by source code-based
pre-trained models compared to the features encoded by
natural-language based pre-trained models in a task of
SDP?

To what extent does the use of deep semantic and
contextual features of the source codes extracted using
pre-trained BERT-based language models improve the
performance of software defect predictors compared to the
semantic features learned by natural language-based
models such as doc2vec and LSI?
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Background

Semantic features used for SDP

Abstract Syntax Trees-based representations
[WLT16, WLNT18, MHX*20, DPN*19]
e graph-based representations [PLNB17]

® token embeddings [HYLZ18, ULAT22] and document
embeddings [MTC22]
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Background

Classification models

CNN [MHX*20, PLNB17]

LSTM, BiLSTM [DPN*19, MVAK*20, ULAT22, LL21]
DBN [WLT16, WLNT18]

BERT fine-tuning [PLX21]
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Methodology

Case study

The Apache Calcite data set is used [BCRH'18].
® 16 versions (1.0.0 - 1.15.0)
® ground truth labels for all included application classes:
® + = defective
® — = non-defective
¢ Data imbalance: defective rate varies from 0.033 (version
1.15.0) to 0.166 (version 1.0.0)
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of semantic Formalization of the SDP problem
features
extracted
using
BERT-based
language
models for Formalization as a supervised binary classification problem.
enhancing the
performance
of software
defect

classifiers ® an object-oriented software system S = {c1,¢2,...,¢Cn}
A. Briciu, G. consisting of software entities (i.e. application classes)
Czibula and

M. Lupea )

software entities characterized by m features: fi,...fn, —
each application class ¢;, 1 < i < n is represented by a
high dimensional numerical vector ¢; = (ci1,- - -, Cim),
Methodology where ¢ (V1 < j < m) is the value of the feature f;
computed/learned for the application class ¢;.

e GOAL: predict if a certain software entity is likely to
belong to the + or — target class
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Methodology

Data representation

Source code embeddings obtained using 2 BERT-based models:
RoBERTa-base (a natural language model) &
CodeBERT-base-MLM (a programming language model).

Feature extraction approach
® Remove comments, documentation

@® Tokenize source code files (maximum length = 512,
padding and truncation applied)

© Extract last hidden layer representations from BERT
model (512x768)

O Apply mean pooling to obtain a representation for the
entire input sequence
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Methodology

The SDP classifier

The SDP classifier used is based on an artificial neural network
(ANN).

architecture: 768 (input) - 128 - 32 - 16 - 1 (output)
hidden layers: RelLU activation function

output layer: sigmoid activation function

to account for data imbalance: class weights

early stopping criterion based on AUPRC value on the
validation set
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Methodology

Training & classification

Follow the historical evolution of the Calcite software and
assess the real-life defect prediction capabilities of the classifier.

e train ANN on the application classes from versions 0..k
® 80% will be used for training
® 20% will be used for validation

e test on version k +1 (Vk,0 < k < 14).
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of semantic Testing & evaluation: Evaluation
features
extracted
using

senr g After classification, the TP (true positive), TN (true negative),
language FP (false pos-

models for

enhencing thejtjve) and FIN (false negative) are reported in a confusion matrix.

performance
of software

defect
classifiers
A. Briciu, G. Metrics used:
Czibula and .. .. P
M. Lupea ® PPV (precision for the positive class) = w5 75
* POD (probability of detection) = ey
® Spec (specificity or true negative rate) = TNTiJ:VFP
Methodology ® FAR (false alarm ratio) = %
® (Sl (critical success index) = %,FV;FP

® AUC (Area under the ROC curve) = %

® MCC (Matthews Correlation Coefficient) =
TP-TN—FP-FN
/(TP+FP)-(TP+FN)-(TN+FP)-(TN+FN)

2.-PPV-POD

® F1 (F-score for the positive class) = S5 p65 -
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R——— Version  Model used for | TP FP | TN FN PPV (1) POD (1) Spec (1) | FAR (1) | CSI (1) | AUC (1) | MCC (1) " F1 (1)
- k code embedding

using RoBERTa 50 [136 ] 854 | 63 | 0269 | 0442 | 0863 | 0731 | 0.201 | 0.653 0247 | 0.334
BERT-based 1.0.0 | CodeBERT-MLM | 60 | 97 | 893 | 44 0416 0611 _ 0902 | 0.584 | 0329 | 0.756 0435  0.495
language RoBERTa 109 | 60 | 922 | 17 ] 0645 _ 0865 | 0939 | 035 | 0586 | 0902 775 ] 0739
models for 1.1.0 [ CodeBERT-MLM | 100 | 24 | 958 | 26 0806 [ 0794 0976 | 0194 | 0.667 [ 0.885 0753 0.800
enhancing the RoBERTa 98 | 43 | 960 | 14 0.695 | 0875 _ 0957 | 0305 | 0.632 | 0916 0681 0.775
SATETTENEE 1.2.0 | CodeBERT-MLM | 106 | 88 | 915 | 6 | 0546 0946 | 0912 | 0454 | 0530 | 0.929 0643 | 0.693
RoBERTa 100 | 72 | 932 | 23 0581 | 0813 _ 0928 | 0419 | 0513 | 0871 0643 0.678
of software 1.3.0 | CodeBERT-MLM | 105 | 136 | 868 | 18 | 0.436 0.854 0865 | 0.664 | 0405 | 0.850 0546 | 0577
defect RoBERTa 87 [112| 961 | 16 0437 | 0845 _ 0.8% | 0563 | 0.405 | 0.870 0558 0.576
classifiers 1.4.0 | CodeBERT-MLM | 101 [312| 761 | 2 | 0.245 0981 | 0709 | 0.755 | 0.243 | 0.845 0409 | 0.391
RoBERTa 99 [113| 973 | 8 | 0.467 0925 | 0896 0533 | 0450 | 00911 0614 | 0.621
A. Briciu, G. 1.5.0 | CodeBERT-MLM | 90 | 68 | 1018 | 17 0570 [ 0841 0937 | 0430 | 0514 [ 0.889 0656 0.679
GZibulatand RoBERTa 109 [ 90 [ 1034 | 19 ] 0548 _ 0852 ] 0920 | 0452 | 0500 | 0886 0639 ] 0.667
M. Lupea 1.6.0 | CodeBERT-MLM | 93 | 45 | 1079 | 35 0.674 [ 0727 __ 0960 | 0.326 | 0538 | 0.843 0.664  0.699
: RoBERTa 71 | 1251075 | 30 | 0362 | 0703 | 0.896 | 0638 | 0.314 | 0.799 0448 | 0.478
1.7.0 | CodeBERT-MLM | 95 | 113 1087 | 6 0457 0941 0906 | 0543 | 0444 | 0.923 0618 0.615
RoBERTa 81 [155| 1065 | 9 | 0343 | 0900 | 0873 0657 | 0331 | 0.886 0509 | 0.497
1.8.0 | CodeBERT-MLM | 82 | 1271093 | 8 0392 0911  0.89 | 0.608 | 0.378 | 0.904 0557 0.548
RoBERTa 81 | 166 | 1060 | 3 | 0328 _ 0064 | 0865 | 0672 | 0.324 | 0914 0519 | 0.489
1.9.0 |CodeBERT-MLM | 80 | 114 [ 1112 | 4 0412 [ 0952 _ 0907 | 0588 | 0.404 | 0.930 0593 0576
RoBERTa 61 | 01 | 1160 | 10 | 0.401 0763 [ 0027 | 0599 | 0357 | 0845 0515 ] 0526
1.10.0 [CodeBERT-MLM | 61 | 73 [ 1178 | 19 0455 0763 0942 | 0545 | 0399 | 0.852 0556 0.570
RoBERTa 60 | 95 | 1239 | 21 0387 | 0741 _ 0029 | 0613 | 0341 | 0835 0498 0.508
Results and 1.11.0 [ CodeBERT-MLM | 60 | 182 | 1152 | 12 | 0275 0852 | 0864 | 0725 | 0262 | 0.858 0435 | 0.416
e RoBERTa 47 [ 156 | 1066 | 6 | 0232 | 0887 | 0872 0768 | 0225 | 0.880 0414 | 0.367
1.12.0 [CodeBERT-MLM | 48 1421080 | 5 0253  0.906  0.884 | 0.747 | 0246 | 0.895 0442 0395
RoBERTa 42 [107 | 1148 | 11 0282 0792 _ 0915 | 0718 | 0.263 | 0.854 0439 0.416
1.13.0 | CodeBERT-MLM | 42 | 108 | 1147 | 11 | 0280  0.792 914 | 0720 | 0261 | 0853 0437 | 0.414
RoBERTa 42 [ 157 [ 1150 | 3 0.211 0933 | 0880 | 0789 | 0.208 | 0.907 0412 0344
1.14.0 [CodeBERT-MLM | 40 | 152 1155 | 5 | 0208 | 0889  0.884 [ 0792 | 0203 | 0.886 0397 | 0.338

Table: Experimental results. For each testing case (the SDP classifier trained
on all Calcite releases from 0 to k, then tested on version k 4+ 1) and two code
embeddings (generated using RoOBERTa and CodeBERT-MLM), the obtained
confusion matrix and the metrics values are provided.
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good performance of the SDP classifier for the defect
A. Briciu, G.

Caibula and class for most test configurations
M. Lupea

® classifier trained on CodeBERT-MLM representations
outperforms the one trained on RoBERTa representations

® RoBERTa-based model achieved comparable results

Results and
discussion



A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software

A. Briciu, G.
Czibula and
M. Lupea

Results and
discussion

Results (1)

Dificalty Wiodel used to ¥ (Training data from Calcite release 1.0 testing data from Calcite release TK+1.0)
0 T 7 3 7 5 5 7 ] 9 0 T 4] 13 i0)

Defect class 05684 | 0681 | 0692 | 0686 | 0690 | 0687 | 0688 | 0694 | 0688 | 0687 | 0690 | 0691 | 0696 | 0,691 | 0692
0436 | 0.372 | 0378 | 0371 | 0363 | 0340 | 0318 | 0336 | 0350 | 0341 | 0338 | 0351 | 0352 | 0350 | 0343
Nom-Defect class | _2252vec+IST[MTC22] | 0095 | 0.089 | 0.088 | 0.085 | 0.079 | 0076 | 0.076 | 0.072 | 0.068 | 0.064 | 0062 | 0.060 | 0.057 | 0.055 | 0052
CodeBERT-MLM 0093 | 0.087 | 008L | 0.081 | 0072 | 0.062 | 0058 | 0055 | 0052 | 0052 | 0051 | 0.047 | 0047 | 0.047 | 0044
Overall Goc2vectISIMTC23] | 0174 | 0.164 | 0160 | 0156 | 0.148 | 0143 | 0142 | 0137 | 0130 | 0124 | 0120 | 0117 | 0112 | 0108 | 0103
CodeBERT-MLM 0139 | 0.123 | 0117 | 0115 | 0105 | 0092 | 0086 | 0084 | 0082 | 0079 | 0078 | 0075 | 0073 | 0072 | 0068

Table: Difficulty values for all fifteen testing configurations, for two representations:
CodeBERT-MLM.

Figure: Classification improvement of CodeBERT-MLM representations over doc2vec+LSI representations in all testing
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Discussion (I1)

Same training & testing methodology used for the doc2vec
and LSI representations introduced in [MTC22].

e significant differences in computed difficulty values for the
positive (defect) class

® overall descending trend: highest difficulty obtained for
testing configuration with k =0

® considerable improvements observed when using

BERT-based features as opposed to doc2vec+LSI features
[MTC22]
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Conclusions

Conclusions

® CodeBERT-MLM model, trained on source codes,

provided more effective representations for detecting
software defects than a model that focuses on natural
language, such as RoBERTa

the semantic and contextual features extracted by the
pre-trained CodeBERT-MLM model better at
discriminating between defective and non-defective source
codes, compared to the features encoded in the source
code semantic representations learned by doc2vec and
LSI (two natural language-based models that learn only
from the analyzed input source codes)

future work: add comments from the source code and/or
other software artifacts
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