A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea
Introduction
Background
Methodology

Results and
discussion

Conclusions

A study on the relevance of semantic
features extracted using BERT-based
language models for enhancing the
performance of software defect classifiers

Anamaria Briciu, Gabriela Czibula, Mihaiela Lupea

Department of Computer Science, Babes-Bolyai University Cluj-Napoca,
Romania

A study on
the relevance .
of semantic Outhne
features
extracted
using
BERT-based
language
models for
enhancing the @) Introduction
performance
of software
defect
classifiers

@ Background

A. Briciu, G.
Czibula and
M. Lupea

Introduction e MethOdOIOgy

Background

Methodology

O Results and discussion

Results and
discussion

Conclusions

@ Conclusions

Outline

@ Introduction

@ Background

€ Methodology

O Results and discussion

@ Conclusions

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Software defect prediction

Identifying the software entities (classes, modules, methods,
functions, etc.) that are defective in a new version of a

software system

Relevance:
® improvement of software quality
® case software maintenance and evolution

A study on
the relevance

of semantic Proposed study
features
extracted
using
BERT-based
language
models for Investigate the relevance of source code representations
enhancing the
;) . e
e automatically learned using pre-trained language models.
defect
classifiers
A. Briciu, G. Contributions
Czibula and
M. Lupea - a oo .
@ examining the discriminating power of extracted
Introduction BERT-based embeddings in the context of software defect
prediction

@® analysis of the capacity of natural language patterns to
discriminate between defective and non-defective instances

© novel evaluation strategy

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the RQl
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction RQ2

Research questions

What is the relevance of the programming
language-specific information learned by source code-based
pre-trained models compared to the features encoded by
natural-language based pre-trained models in a task of
SDP?

To what extent does the use of deep semantic and
contextual features of the source codes extracted using
pre-trained BERT-based language models improve the
performance of software defect predictors compared to the
semantic features learned by natural language-based
models such as doc2vec and LSI?

Outline

@ Introduction

@ Background

€ Methodology

O Results and discussion

@ Conclusions

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Background

Semantic features used for SDP

Abstract Syntax Trees-based representations
[WLT16, WLNT18, MHX*20, DPN*19]
e graph-based representations [PLNB17]

® token embeddings [HYLZ18, ULAT22] and document
embeddings [MTC22]

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Background

Classification models

CNN [MHX*20, PLNB17]

LSTM, BiLSTM [DPN*19, MVAK*20, ULAT22, LL21]
DBN [WLT16, WLNT18]

BERT fine-tuning [PLX21]

Outline

@ Introduction

@ Background

© Methodology

O Results and discussion

@ Conclusions

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Methodology

Case study

The Apache Calcite data set is used [BCRH'18].
® 16 versions (1.0.0 - 1.15.0)
® ground truth labels for all included application classes:
® + = defective
® — = non-defective
¢ Data imbalance: defective rate varies from 0.033 (version
1.15.0) to 0.166 (version 1.0.0)

A study on
the relevance . .
of semantic Formalization of the SDP problem
features
extracted
using
BERT-based
language
models for Formalization as a supervised binary classification problem.
enhancing the
performance
of software
defect

classifiers ® an object-oriented software system S = {c1,¢2,...,¢Cn}
A. Briciu, G. consisting of software entities (i.e. application classes)
Czibula and

M. Lupea)

software entities characterized by m features: fi,...fn, —
each application class ¢;, 1 < i < n is represented by a
high dimensional numerical vector ¢; = (ci1,- - -, Cim),
Methodology where ¢ (V1 < j < m) is the value of the feature f;
computed/learned for the application class ¢;.

e GOAL: predict if a certain software entity is likely to
belong to the + or — target class

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Methodology

Data representation

Source code embeddings obtained using 2 BERT-based models:
RoBERTa-base (a natural language model) &
CodeBERT-base-MLM (a programming language model).

Feature extraction approach
® Remove comments, documentation

@® Tokenize source code files (maximum length = 512,
padding and truncation applied)

© Extract last hidden layer representations from BERT
model (512x768)

O Apply mean pooling to obtain a representation for the
entire input sequence

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Methodology

The SDP classifier

The SDP classifier used is based on an artificial neural network
(ANN).

architecture: 768 (input) - 128 - 32 - 16 - 1 (output)
hidden layers: RelLU activation function

output layer: sigmoid activation function

to account for data imbalance: class weights

early stopping criterion based on AUPRC value on the
validation set

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Methodology

Training & classification

Follow the historical evolution of the Calcite software and
assess the real-life defect prediction capabilities of the classifier.

e train ANN on the application classes from versions 0..k
® 80% will be used for training
® 20% will be used for validation

e test on version k +1 (Vk,0 < k < 14).

A study on
the relevance . . .
of semantic Testing & evaluation: Evaluation
features
extracted
using

senr g After classification, the TP (true positive), TN (true negative),
language FP (false pos-

models for

enhencing thejtjve) and FIN (false negative) are reported in a confusion matrix.

performance
of software

defect
classifiers
A. Briciu, G. Metrics used:
Czibula and P
M. Lupea ® PPV (precision for the positive class) = w5 75
* POD (probability of detection) = ey
® Spec (specificity or true negative rate) = TNTiJ:VFP
Methodology ® FAR (false alarm ratio) = %
® (Sl (critical success index) = %,FV;FP

® AUC (Area under the ROC curve) = %

® MCC (Matthews Correlation Coefficient) =
TP-TN—FP-FN
/(TP+FP)-(TP+FN)-(TN+FP)-(TN+FN)

2.-PPV-POD

® F1 (F-score for the positive class) = S5 p65 -

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea
Introduction
Background
Methodology

Results and
discussion

Conclusions

O Results and discussion

Outline

A study on
the relevance

of semantic ReSUltS (I)
features
R——— Version Model used for | TP FP | TN FN PPV (1) POD (1) Spec (1) | FAR (1) | CSI (1) | AUC (1) | MCC (1) " F1 (1)
- k code embedding

using RoBERTa 50 [136] 854 | 63 | 0269 | 0442 | 0863 | 0731 | 0.201 | 0.653 0247 | 0.334
BERT-based 1.0.0 | CodeBERT-MLM | 60 | 97 | 893 | 44 0416 0611 _ 0902 | 0.584 | 0329 | 0.756 0435 0.495
language RoBERTa 109 | 60 | 922 | 17] 0645 _ 0865 | 0939 | 035 | 0586 | 0902 775] 0739
models for 1.1.0 [CodeBERT-MLM | 100 | 24 | 958 | 26 0806 [0794 0976 | 0194 | 0.667 [0.885 0753 0.800
enhancing the RoBERTa 98 | 43 | 960 | 14 0.695 | 0875 _ 0957 | 0305 | 0.632 | 0916 0681 0.775
SATETTENEE 1.2.0 | CodeBERT-MLM | 106 | 88 | 915 | 6 | 0546 0946 | 0912 | 0454 | 0530 | 0.929 0643 | 0.693
RoBERTa 100 | 72 | 932 | 23 0581 | 0813 _ 0928 | 0419 | 0513 | 0871 0643 0.678
of software 1.3.0 | CodeBERT-MLM | 105 | 136 | 868 | 18 | 0.436 0.854 0865 | 0.664 | 0405 | 0.850 0546 | 0577
defect RoBERTa 87 [112| 961 | 16 0437 | 0845 _ 0.8% | 0563 | 0.405 | 0.870 0558 0.576
classifiers 1.4.0 | CodeBERT-MLM | 101 [312| 761 | 2 | 0.245 0981 | 0709 | 0.755 | 0.243 | 0.845 0409 | 0.391
RoBERTa 99 [113| 973 | 8 | 0.467 0925 | 0896 0533 | 0450 | 00911 0614 | 0.621
A. Briciu, G. 1.5.0 | CodeBERT-MLM | 90 | 68 | 1018 | 17 0570 [0841 0937 | 0430 | 0514 [0.889 0656 0.679
GZibulatand RoBERTa 109 [90 [1034 | 19] 0548 _ 0852] 0920 | 0452 | 0500 | 0886 0639] 0.667
M. Lupea 1.6.0 | CodeBERT-MLM | 93 | 45 | 1079 | 35 0.674 [0727 __ 0960 | 0.326 | 0538 | 0.843 0.664 0.699
: RoBERTa 71 | 1251075 | 30 | 0362 | 0703 | 0.896 | 0638 | 0.314 | 0.799 0448 | 0.478
1.7.0 | CodeBERT-MLM | 95 | 113 1087 | 6 0457 0941 0906 | 0543 | 0444 | 0.923 0618 0.615
RoBERTa 81 [155| 1065 | 9 | 0343 | 0900 | 0873 0657 | 0331 | 0.886 0509 | 0.497
1.8.0 | CodeBERT-MLM | 82 | 1271093 | 8 0392 0911 0.89 | 0.608 | 0.378 | 0.904 0557 0.548
RoBERTa 81 | 166 | 1060 | 3 | 0328 _ 0064 | 0865 | 0672 | 0.324 | 0914 0519 | 0.489
1.9.0 |CodeBERT-MLM | 80 | 114 [1112 | 4 0412 [0952 _ 0907 | 0588 | 0.404 | 0.930 0593 0576
RoBERTa 61 | 01 | 1160 | 10 | 0.401 0763 [0027 | 0599 | 0357 | 0845 0515] 0526
1.10.0 [CodeBERT-MLM | 61 | 73 [1178 | 19 0455 0763 0942 | 0545 | 0399 | 0.852 0556 0.570
RoBERTa 60 | 95 | 1239 | 21 0387 | 0741 _ 0029 | 0613 | 0341 | 0835 0498 0.508
Results and 1.11.0 [CodeBERT-MLM | 60 | 182 | 1152 | 12 | 0275 0852 | 0864 | 0725 | 0262 | 0.858 0435 | 0.416
e RoBERTa 47 [156 | 1066 | 6 | 0232 | 0887 | 0872 0768 | 0225 | 0.880 0414 | 0.367
1.12.0 [CodeBERT-MLM | 48 1421080 | 5 0253 0.906 0.884 | 0.747 | 0246 | 0.895 0442 0395
RoBERTa 42 [107 | 1148 | 11 0282 0792 _ 0915 | 0718 | 0.263 | 0.854 0439 0.416
1.13.0 | CodeBERT-MLM | 42 | 108 | 1147 | 11 | 0280 0.792 914 | 0720 | 0261 | 0853 0437 | 0.414
RoBERTa 42 [157 [1150 | 3 0.211 0933 | 0880 | 0789 | 0.208 | 0.907 0412 0344
1.14.0 [CodeBERT-MLM | 40 | 152 1155 | 5 | 0208 | 0889 0.884 [0792 | 0203 | 0.886 0397 | 0.338

Table: Experimental results. For each testing case (the SDP classifier trained
on all Calcite releases from 0 to k, then tested on version k 4+ 1) and two code
embeddings (generated using RoOBERTa and CodeBERT-MLM), the obtained
confusion matrix and the metrics values are provided.

A study on
the relevance . .
of semantic DISCUSSIOI’I (I)
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers °

good performance of the SDP classifier for the defect
A. Briciu, G.

Caibula and class for most test configurations
M. Lupea

® classifier trained on CodeBERT-MLM representations
outperforms the one trained on RoBERTa representations

® RoBERTa-based model achieved comparable results

Results and
discussion

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software

A. Briciu, G.
Czibula and
M. Lupea

Results and
discussion

Results (1)

Dificalty Wiodel used to ¥ (Training data from Calcite release 1.0 testing data from Calcite release TK+1.0)
0 T 7 3 7 5 5 7] 9 0 T 4] 13 i0)

Defect class 05684 | 0681 | 0692 | 0686 | 0690 | 0687 | 0688 | 0694 | 0688 | 0687 | 0690 | 0691 | 0696 | 0,691 | 0692
0436 | 0.372 | 0378 | 0371 | 0363 | 0340 | 0318 | 0336 | 0350 | 0341 | 0338 | 0351 | 0352 | 0350 | 0343
Nom-Defect class | _2252vec+IST[MTC22] | 0095 | 0.089 | 0.088 | 0.085 | 0.079 | 0076 | 0.076 | 0.072 | 0.068 | 0.064 | 0062 | 0.060 | 0.057 | 0.055 | 0052
CodeBERT-MLM 0093 | 0.087 | 008L | 0.081 | 0072 | 0.062 | 0058 | 0055 | 0052 | 0052 | 0051 | 0.047 | 0047 | 0.047 | 0044
Overall Goc2vectISIMTC23] | 0174 | 0.164 | 0160 | 0156 | 0.148 | 0143 | 0142 | 0137 | 0130 | 0124 | 0120 | 0117 | 0112 | 0108 | 0103
CodeBERT-MLM 0139 | 0.123 | 0117 | 0115 | 0105 | 0092 | 0086 | 0084 | 0082 | 0079 | 0078 | 0075 | 0073 | 0072 | 0068

Table: Difficulty values for all fifteen testing configurations, for two representations:
CodeBERT-MLM.

Figure: Classification improvement of CodeBERT-MLM representations over doc2vec+LSI representations in all testing

0,550
0,500
0,450
0,400
0,350
0,300
0,250
0,200
0,150
0,100
0,050
0,000

configurations.

[

W R W AUC
160 170 180
Version k

f

190

1100 1110

1120

1130

1140

based on doc2vec+LSl, and learned by

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Results and
discussion

Discussion (I1)

Same training & testing methodology used for the doc2vec
and LSI representations introduced in [MTC22].

e significant differences in computed difficulty values for the
positive (defect) class

® overall descending trend: highest difficulty obtained for
testing configuration with k =0

® considerable improvements observed when using

BERT-based features as opposed to doc2vec+LSI features
[MTC22]

Outline

@ Introduction

@ Background

€ Methodology

O Results and discussion

@ Conclusions

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea

Conclusions

Conclusions

® CodeBERT-MLM model, trained on source codes,

provided more effective representations for detecting
software defects than a model that focuses on natural
language, such as RoBERTa

the semantic and contextual features extracted by the
pre-trained CodeBERT-MLM model better at
discriminating between defective and non-defective source
codes, compared to the features encoded in the source
code semantic representations learned by doc2vec and
LSI (two natural language-based models that learn only
from the analyzed input source codes)

future work: add comments from the source code and/or
other software artifacts

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea
Introduction
Background
Methodology

Results and
discussion

Conclusions

Bibliography

[§ Edmon Begoli, Jestis Camacho-Rodriguez, Julian Hyde,

Michael J. Mior, and Daniel Lemire.

Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources.

In SIGMOD '18: Proceedings of the 2018 International
Conference on Management of Data, SIGMOD '18, pages
221-230, New York, NY, USA, 2018. Association for
Computing Machinery.

Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen
Tran, John Grundy, Aditya Ghose, Taeksu Kim, and
Chul-Joo Kim.

Lessons learned from using a deep tree-based model for
software defect prediction in practice.

In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), pages 46-57. IEEE,
2019.

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea
Introduction
Background
Methodology

Results and
discussion

Conclusions

Xuan Huo, Yang Yang, Ming Li, and De-Chuan Zhan.
Learning semantic features for software defect prediction
by code comments embedding.

In 2018 IEEE International Conference on Data Mining
(ICDM), pages 1049-1054, 2018.

Junhao Lin and Lu Lu.
Semantic feature learning via dual sequences for defect

prediction.
IEEE Access, 9:13112-13124, 2021.

Shi Meilong, Peng He, Haitao Xiao, Huixin Li, and Cheng
Zeng.

An approach to semantic and structural features learning
for software defect prediction.

Mathematical Problems in Engineering, 2020:1-13, 2020.

Diana-Lucia Miholca, Vlad-loan Tomescu, and Gabriela
Czibula.

A study on
the relevance
of semantic
features
extracted
using
BERT-based
language
models for
enhancing the
performance
of software
defect
classifiers

A. Briciu, G.
Czibula and
M. Lupea
Introduction
Background
Methodology

Results and
discussion

Conclusions

[

[

An in-depth analysis of the software features’ impact on
the performance of deep learning-based software defect
predictors.

IEEE Access, 10:64801-64818, 2022.

Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalilian,
Pooria Poorsarvi-Tehrani, and Hassan Haghighi.

Sldeep: Statement-level software defect prediction using
deep-learning model on static code features.

Expert Systems with Applications, 147:113156, 2020.

Anh Viet Phan, Minh Le Nguyen, and Lam Thu Bui.
Convolutional neural networks over control flow graphs for
software defect prediction.

In 2017 IEEE 29th International Conference on Tools with
Artificial Intelligence (ICTAl), pages 45-52. IEEE, 2017.

Cong Pan, Minyan Lu, and Biao Xu.

An empirical study on software defect prediction using
CodeBERT model.

Applied Sciences, 11(11):Article No. 4793, 2021.

A study on ﬁ Md Nasir Uddin, Bixin Li, Zafar Ali, Pavlos Kefalas, Inayat

the relevance

off:::rl‘lar:ic Khan, and Islam Zada.

extracted Software defect prediction employing bilstm and bert-based
BlEar'zE;t;gagseed semantic feature.

models for Soft Computing, 26(16):7877-7891, 2022.

enhancing the

P sotowme [M Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan.

defect . .
classifiers Deep semantic feature learning for software defect
A. Briciu, G. prediction.
Czibula and . . .
M. Lupea IEEE Transactions on Software Engineering,

46(12):1267-1293, 2018.

Introduction

Background [§ Song Wang, Taiyue Liu, and Lin Tan.

Methodology Automatically learning semantic features for defect
Results and . .

discussion pred|Ct|On-

Gomdeons In Proceedings of the 38th International Conference on

Software Engineering, pages 297-308, 2016.

	Introduction
	Background
	Methodology
	Results and discussion
	Conclusions

