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What is colorization?

% i\“x‘ﬂ;&‘%
Q0
3
1 C\ e
0«4,415
.
3

Figure: Colorization learning curve as seen from a human perspective.



Problem Statement

Photography colorization, in our context, is the task of artificially
reconstructing color information in a picture that has never been
captured on a storage medium capable of recording color.



Introduction
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Figure: The Paper Time Machine, by Wolfgang Wild and Jordan J. Lloyd



Introduction

@ deep learning algorithms are predicting the chromaticity
through either a discriminative, or generative learning

@ artists, such as those from Dynamichrome [3], are closing the
gap through the manually constructed layers which often
come from intuition

@ fooling the human perception of truth is the main goal of any
method, as monochromatic areas of a picture may have
multiple plausible colorization
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Figure: Visual decomposition of the RGB and LAB layers.




Motivation

Why would someone invest in colorization?

@ Medicine: improved user interfaces for diagnostic purposes

o Communications: improvements in compression algorithms,
decreasing the waiting time

@ Games: rendering photo-realistic scenes

@ Arts: restoring old Hollywood movies, comics, and legacy
photography

e Computational Intelligence: proxy for other learning tasks
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Figure: The role of timing in seizing research opportunities, starting with
Wilson Markle and Brian Hunt, and ending up with research initiatives
published a couple of months ago.




Research Questions

@ What patterns and models are usually followed?
@ What are the implications of Convolutional Neural Network?

@ How well would these methods perform in professional
applications?



Colorization Patterns

Data-Driven Colorization

@ early iterations heavily relied on human interventions

@ leveraging large-scale datasets and GPU performance,
fully-automatic colorization became achievable

Human-in-the-Loop Colorization

With data-driven approaches, user preferences were not taken into
consideration, hence the need for additional solutions:

@ based on textual descriptions
@ based on color hints

@ based on reference color images



Based on Textual Descriptions

@ notes were often placed on the back of legacy photography
@ social media platforms are improving their indexing systems
e words and sentences associated with the visual content

@ building on the idea that particular colors are associated with
complex semantic concepts

e language specific colors: English has eleven basic color
categories, Russian twelve
e a language may have only three basic color categories
@ imagine that a cold evening varies in nuances of blue, while
the golden hour covers everything in warm colors



Based on Textual Descriptions

@ models that join textual and visual feature maps, with
expensive computational costs due to the number of
parameters

@ balancing image segmentation - Hu et al. [4], and fusion
modules - Chen et al. [2]

o for parameters efficiency we may apply feature-wise linear
modulation - Perez et al. 2018



Based on Color Hints

Figure: Capture from the application proposed in Zhang et al. [9].



Based on Color Hints
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Figure: Capture from the model proposed in Xiao et al. [7].




Based on Reference Color Images

e transferring the chromaticity information from a
semantically related color image to a target grayscale image

@ allows for a multi-modal colorization

@ the user may provide an image, or the system may retrieve the
appropriate one

@ imagine passing colors from a cherry blossom to a black and
white Californian coast image, obtaining synthetic, but artistic
pink waves



Deep Learning Models

CHNNg




CNN-based Models

@ the network’'s most important aspect are the convolutional
layers, made up of convolutional kernels (filters)

@ when convolved with the input image, these filters are
generating the feature maps




CNN-based Models

@ these features are collected from various components and
compressed, then later up-scaled to the original image size

@ the image ratio must be preserved (using padding), and
distortions must be prevented (using stride instead of pooling)
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Figure: Network architecture from Xiao et al. [7].



CNN-based Models

@ low, middle, and global features extraction

@ predictions are not always deterministic, but often probabilistic

@ discriminative models: VGG variants and U-Net based
architectures

@ generative model: Pixel Convolutional Neural Network

@ end-to-end learning is often used

o alleviate the bias encapsulated with various decisions
o reduce artifacts
e no need for hand-designed components



CNN-based Models

We often noticed the following objective function strategies being
applied to the networks:

@ Huber Loss, L2, Kullback—Leibler divergence, Perception
Loss, cross-entropy, Color Embedding, Color Generation, and
Semantic Loss

Open problems

@ conservative guess (everything can be brown)
lack of color normalization

color bleeding

small objects are ignored



Results Analysis

@ since early 80's, the number of solutions proposed in literature
remained small (aprox. 85 papers)

@ the human eye may be fooled by only a dozen of these
algorithms

@ we wondered if we can reproduce the results on a manually
curated dataset



Results Analysis

Paper Colorization Metrics Recommended
1 LPIPS o 1T PSNR o 1 SSIM o types of images

Antic et al. [1] 0.18389 0.08614 13.36557 3.55204 0.73828 0.12560 all

lizuka et al. [5] 0.18068 0.06863 15.80264 3.94617 0.77813 0.12155 events, portraits,
landscapes

Zhang et al. [8] 0.22174 0.08790 13.60779 4.01649 0.77388 0.11998 landscapes

Kumar et al. [6] 0.30766 0.07357 11.22693 3.14602 0.53996 0.15731 close-up portraits,
landscapes

Table: Performance evaluation made on urban landscapes and events,
objects, and portraits.



Results Analysis

Figure: A visual validation of the results obtained with Antic et al. [1].




@ Most used metrics: Peak Signal-to-Noise Ratio, Structural
Similarity Index Measure, Learned Perceptual Image Patch
Similarity

@ Alternative metrics: Patch-based Contrast Quality Index
and the Underwater Image Quality Measure

@ Turing Test - having a person assessing the colorization
results is the golden standard at the moment



@ LPIPS uses deep network activations as a perceptual
similarity metric, which works surprisingly well, and comes
closer to the human preference in raking

@ in general, metrics account for the mean luminosity, change
in contrast, structural distortion, sharpness, and
colorfulness



Colorization Software Reliability

@ only a few colorization algorithms are available online
@ the setup and hardware requirements are a challenge
@ GitHub repositories are not often well maintained

How well would these methods perform in professional
applications?

@ integrated into products targeting the general public
@ Zhang et al. [9] was included in Photoshop Elements 2020



Conclusions and Future Work

Our work sets the grounds for further colorization initiatives.

@ extend the experimental evaluation

@ contribute on making these models more accessible to the
general public

@ improve on the existing CNN-based approaches



Thank you!
Questions?
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