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Introduction

Figure: A picture taken from space
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Introduction

Figure: The same picture, but flipped upside down
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Introduction

Figure: An illusion of depth
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Research Questions and Original Contributions

RQ1: How relevant are depth maps in the context of indoor-outdoor
image classification?

Unsupervised learning based analysis on DIODE dataset for
indoor-outdoor classification

t-SNE clustering support for further supervised investigations

RQ2: To what extent does aggregating visual features into more
granular sub-images increase the performance of classifiers?

Supervised learning based classification for supporting the unsupervised
approach

Multilayer Perceptron (MLP) classifier tested to confirm hypothesis

RQ3: How correlated are the results of the unsupervised based
analysis and the performance of supervised models applied for
indoor-outdoor image classification?

Comparative analysis on image features aggregation
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Computer Vision (CV) and Deep Learning (DL)

Most recent work implement Convolutional Neural Networks (CNNs) in dense
visual tasks such as Semantic Segmentation (SS) or Depth Estimation (DE).

[ZWZ+20] Split-Attention Network (ResNeSt)

efficient network that outperformed other similar models in what
regards both computational costs and performance
the model introduced a new split-attention block for dense task
prediction.

[LRSK19, RBK21] Dense Prediction Transformers (DPT)

model that leverages visual transformers instead of convolutions.
its results outperform ResNeSt models that have previously been
considered state-of-the-art.
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Vision Transformers for Dense Prediction (DPT)

Model Image # extracted features # extracted features
resolution after encoder after decoder

Depth Estimation
384×384 49152 12582912

Semantic Segmentation

Table: DPT architectures details

Figure: DPT architecture
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DIODE (Dense Indoor and Outdoor DEpth)

Data has been collected with a FARO Focus S350

It consists of 27858 1024×768 RGB-D images

Photos have been taken both at daytime and night, over several
seasons (summer, fall, winter)

Apart from RGB-D images, DIODE dataset also provides us with normal maps that

could further enhance the learning of depth and vice-versa
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DIODE (Dense Indoor and Outdoor DEpth)

Figure: Sample images from DIODE dataset
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DIODE Structure

Figure: Histogram of depth values
frequency (%) for the whole train set

Figure: Histogram of depth values
frequency (%) for the whole validation
set
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DIODE Structure

Figure: Histogram of depth values
frequency (%) for indoor train set

Figure: Histogram of depth values
frequency (%) for indoor validation set
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DIODE Structure

Figure: Histogram of depth values
frequency (%) for outdoor train set

Figure: Histogram of depth values
frequency (%) for outdoor validation set
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Unsupervised Learning Approach for Analysing the Data

3D t-SNE unsupervised clustering

used for non-linear dimensionality reduction
able to uncover more useful patterns in data
uses Student t-distribution to better disperse the clusters

data normalization with the inverse hyperbolic sine (asinh)
increased sensitivity to particularly small and large values

parameters used

perplexity of 20
learning rate of 3.0

for a slower converging but finer learning curve

1000 iterations

Relevance

Unsupervised learning-based analysis provide useful insight about data
organization and features’ importance.
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Automatic Feature Extraction

1 aggregating RGB from sub-images

3 · k dimensional vector (k = 1, 4, 16)

average RGB values for each sub-image

2 aggregating RGBD from sub-images

4 · k dimensional vector (k = 1, 4, 16)

average RGBD values for each sub-image
Figure: Structure of
image splits

3 features from DPT encoder/decoder
trained for SS
trained for DE
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Deep Learning Tasks

Indoor-Outdoor Classification

Semantic Segmentation

Depth Estimation
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Features Extracted from DL models

DPT trained for Semantic Segmentation

Figure: t-SNE of DPT encoder extracted
features for SS

Figure: t-SNE of DPT decoder extracted
features for SS
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Features Extracted from DL models

DPT trained for Depth Estimation

Figure: t-SNE of DTP encoder extracted
features for DE

Figure: t-SNE of DTP decoder extracted
features for DE

WeaMyL May 28, 2021 18 / 25



Features extracted aggregating RGB and RGBD values

no splits

Figure: t-SNE for RGB without splits Figure: t-SNE for RGB-D without splits
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Features extracted aggregating RGB and RGBD values

4 splits

Figure: t-SNE for RGB with 4 splits Figure: t-SNE for RGB-D with 4 splits
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Features extracted aggregating RGB and RGBD values

16 splits

Figure: t-SNE for RGB with 16 splits Figure: t-SNE for RGB-D with 16 splits
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Supervised Learning Results

Features # Splits Accuracy AUC Specificity Recall

1 0.692±0.077 0.525±0.056 0.980±0.028 0.070±0.121
MLP RGB 4 0.688±0.064 0.517±0.022 0.989±0.014 0.046±0.049

16 0.669±0.049 0.545±0.048 0.912±0.068 0.163±0.136

1 0.880±0.039 0.858±0.041 0.898±0.058 0.817±0.081
MLP RGBD 4 0.876±0.043 0.862±0.044 0.894±0.046 0.829±0.063

16 0.838±0.044 0.826±0.053 0.848±0.060 0.804±0.099

DPT encoder DE 1 0.823±0.131 0.831±0.076 0.812±0.185 0.850±0.069

DPT encoder SS 1 0.953±0.027 0.944±0.030 0.974±0.031 0.915±0.053

Table: Results of indoor-outdoor supervised classification on DIODE dataset

Best two performances (AUC)

1 DPT encoder SS.

2 RGBD with 4 splits.
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Ongoing Experiments and Future Enhancements

Identifying features that can be used in both SS and DE

Identifying other problems that can be solved with adapted DL models

Architecture Transfer from SS towards DE
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Thank you!

Questions?
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