Enhancing the performance of indoor-outdoor image classifications using features extracted from depth-maps

George Ciubotariu Babeș-Bolyai University

WeADL 2021 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the number RO-NO-2019-0133. Contract: No 26/2020.

Working together for a green, competitive and inclusive Europe

Contents

- Introduction
- Original Contribution
- Computer Vision and Deep Learning
- Data Set
- Unsupervised Analysis
- 6 Supervised Analysis
- **Future Enhancements**

Introduction

Figure: A picture taken from space

Introduction

Figure: The same picture, but flipped upside down

Introduction

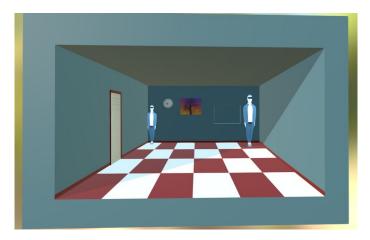


Figure: An illusion of depth

Research Questions and Original Contributions

- RQ1: How relevant are depth maps in the context of indoor-outdoor image classification?
 - Unsupervised learning based analysis on DIODE dataset for indoor-outdoor classification
 - t-SNE clustering support for further supervised investigations
- **RQ2**: To what extent does aggregating visual features into more granular sub-images increase the performance of classifiers?
 - Supervised learning based classification for supporting the unsupervised approach
 - Multilayer Perceptron (MLP) classifier tested to confirm hypothesis
- RQ3: How correlated are the results of the unsupervised based analysis and the performance of supervised models applied for indoor-outdoor image classification?
 - Comparative analysis on image features aggregation

Computer Vision (CV) and Deep Learning (DL)

Most recent work implement Convolutional Neural Networks (CNNs) in dense visual tasks such as Semantic Segmentation (SS) or Depth Estimation (DE).

- [ZWZ⁺20] **Split-Attention Network** (ResNeSt)
 - efficient network that outperformed other similar models in what regards both computational costs and performance
 - the model introduced a new split-attention block for dense task prediction.
- [LRSK19, RBK21] Dense Prediction Transformers (DPT)
 - model that leverages visual transformers instead of convolutions.
 - its results outperform ResNeSt models that have previously been considered state-of-the-art.

Vision Transformers for Dense Prediction (DPT)

Model	Image resolution	# extracted features after encoder	# extracted features after decoder	
Depth Estimation	384×384	49152	12582912	
Semantic Segmentation	304/304	49132	12302912	

Table: DPT architectures details

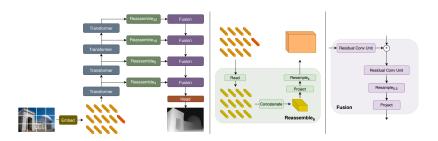


Figure: DPT architecture

DIODE (Dense Indoor and Outdoor DEpth)

- Data has been collected with a FARO Focus S350
- It consists of 27858 1024×768 RGB-D images
- Photos have been taken both at daytime and night, over several seasons (summer, fall, winter)

Apart from RGB-D images, DIODE dataset also provides us with normal maps that could further enhance the learning of depth and vice-versa

DIODE (Dense Indoor and Outdoor DEpth)

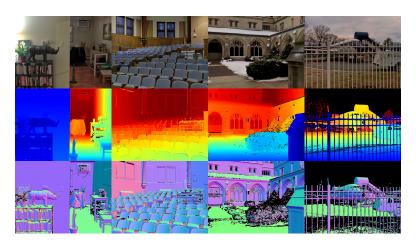


Figure: Sample images from DIODE dataset

DIODE Structure

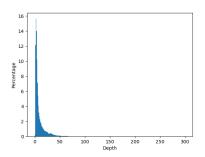


Figure: Histogram of depth values frequency (%) for the whole train set

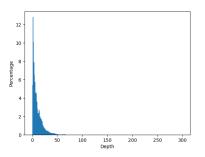


Figure: Histogram of depth values frequency (%) for the whole validation set

DIODE Structure

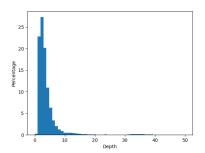


Figure: Histogram of depth values frequency (%) for indoor train set

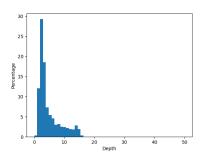


Figure: Histogram of depth values frequency (%) for indoor validation set

DIODE Structure

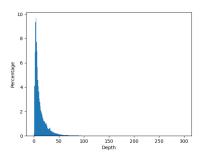


Figure: Histogram of depth values frequency (%) for outdoor train set

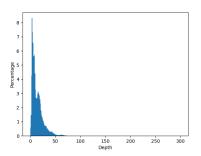


Figure: Histogram of depth values frequency (%) for outdoor validation set

Unsupervised Learning Approach for Analysing the Data

- 3D t-SNE unsupervised clustering
 - used for *non-linear* dimensionality reduction
 - able to uncover more useful patterns in data
 - uses Student t-distribution to better disperse the clusters
- data normalization with the inverse hyperbolic sine (asinh)
 - increased sensitivity to particularly small and large values
- parameters used
 - perplexity of 20
 - learning rate of 3.0
 - for a slower converging but finer learning curve
 - 1000 iterations

Relevance

Unsupervised learning-based analysis provide useful insight about data organization and features' importance.

Automatic Feature Extraction

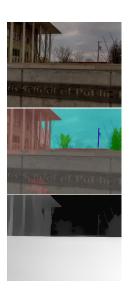
- aggregating RGB from sub-images
 - $3 \cdot k$ dimensional vector (k = 1, 4, 16)
 - average RGB values for each sub-image
- aggregating RGBD from sub-images
 - $4 \cdot k$ dimensional vector (k = 1, 4, 16)
 - average RGBD values for each sub-image
- features from DPT encoder/decoder
 - trained for SS
 - trained for DE

1	2	3	4
5	6	7	8
9		11	12
13	14	15	16

Figure: Structure of image splits

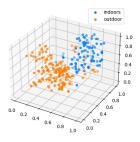
Deep Learning Tasks

- Indoor-Outdoor Classification
- Semantic Segmentation
- Depth Estimation



Features Extracted from DL models

DPT trained for Semantic Segmentation



features for SS

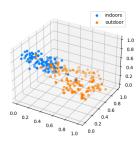
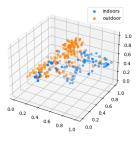


Figure: t-SNE of DPT encoder extracted Figure: t-SNE of DPT decoder extracted features for SS

Features Extracted from DL models

• DPT trained for Depth Estimation



features for DE

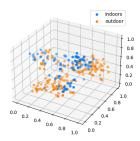
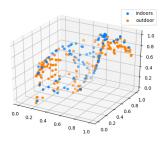


Figure: t-SNE of DTP encoder extracted Figure: t-SNE of DTP decoder extracted features for DE

Features extracted aggregating RGB and RGBD values

• no splits



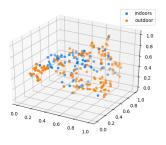
0.0 0.2 0.4 0.6 0.8 1.0 0.0

Figure: t-SNE for RGB without splits

Figure: t-SNE for RGB-D without splits

Features extracted aggregating RGB and RGBD values

4 splits



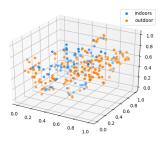
0.0 0.2 0.4 0.6 0.8 1.0 0.0

Figure: t-SNE for RGB with 4 splits

Figure: t-SNE for RGB-D with 4 splits

Features extracted aggregating RGB and RGBD values

• 16 splits



0.8 0.8 0.0 0.2 0.2 0.4 0.6 0.8 1.0 0.0 0.2

Figure: t-SNE for RGB with 16 splits

Figure: t-SNE for RGB-D with 16 splits

Supervised Learning Results

Features	# Splits	Accuracy	AUC	Specificity	Recall
MLP RGB	1	0.692±0.077	0.525±0.056	0.980 ± 0.028	0.070 ± 0.121
	4	0.688 ± 0.064	0.517±0.022	0.989 ± 0.014	0.046±0.049
	16	0.669 ± 0.049	0.545±0.048	0.912 ± 0.068	0.163 ± 0.136
MLP RGBD	1	0.880 ± 0.039	0.858 ± 0.041	0.898 ± 0.058	0.817 ± 0.081
	4	0.876±0.043	0.862 ±0.044	$0.894{\pm}0.046$	0.829 ± 0.063
	16	0.838 ± 0.044	0.826±0.053	0.848 ± 0.060	0.804 ± 0.099
DPT encoder DE	1	0.823 ± 0.131	0.831±0.076	$0.812{\pm}0.185$	0.850 ± 0.069
DPT encoder SS	1	0.953 ±0.027	0.944 ±0.030	0.974 ±0.031	0.915 ±0.053

Table: Results of indoor-outdoor supervised classification on DIODE dataset

Best two performances (AUC)

- DPT encoder SS.
- 2 RGBD with 4 splits.

Ongoing Experiments and Future Enhancements

- Identifying features that can be used in both SS and DE
- Identifying other problems that can be solved with adapted DL models
- Architecture Transfer from SS towards DE

Thank you!

Questions?

Bibliography I

Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen Koltun. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. CoRR, abs/1907.01341, 2019.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. *CoRR*, abs/2103.13413, 2021.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander J. Smola.

Resnest: Split-attention networks. *CoRR*, abs/2004.08955:1–12, 2020.