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Problem statement

What is Software Defect Prediction (SDP)?

consists of detecting software modules prone to be defective in the future

important during all stages of the software lifecycle

problem of major relevance in SBSE

Search-based software engineering seeks to rephrase software engineering tasks into
optimization problems that are naturally approached using artificial intelligence
algorithms.
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Relevance of SDP

enhances software quality

can guide code review and testing-related activities

AI can perform regular checks to ensure software reliability

SDP plug-ins for IDEs could be developed to boost productivity

useful for large legacy software
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Types of Defects

compilation errors (should not pass QA)

copy-pasted problems

concurrency issues

connectivity errors to DB/microservices

platform limitations or hardware issues

client requirement misunderstanding

coding standards or other style conventions

etc.
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Overall Difficulty

not enough relevant data to outperform previous ML models

severe class imbalance

code correctness may vary along the product’s lifetime

many types of defects that have different degrees of severity

regular supervised learning ML models underperform
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Solutions from the literature

The literature is dominated by supervised learning
solutions, such as:

conventional ML predictors [1]

fuzzy models

evolutionary computation to recurrent neural
networks

deep learning models [2]
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Unsupervised learning for SDP

Defect taxonomies:

the Orthogonal Defect Classification proposed by IBM

Defect Origins, Types and Modes proposed by HP

the IEEE Standard Classification for Software Anomalies

The datasets do not contain labels for types of defects =⇒ supervised learning models
for specific classes of bugs remain impossible to build
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Research Questions and Original Contributions

RQ1: How to develop an UL-based methodology which would allow
uncovering specific classes of software defects and the relevant set of
features characterizing them?

RQ2: How to determine the set of software features (attributes) that
characterize specific types of defects and would be useful for
detecting those particular classes?

RQ3: To what extent are the obtained software defect classes
correlated with actual findings in the source code (related to the
defective software entities and the performed modifications in the
source code for fixing these issues)?
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Apache Ivy Dataset

Ivyall : dataset containing all 2237 instances

Ivydefects : dataset containing only the 177 defective instances

F : the set of the 2225 used software metrics (4189 total, of which 1964 were
zero for both defective and non-defective classes

Version Instances Defective instances Defective rate
Apache Ivy 1.4.1 240 11 0.046
Apache Ivy 2.0.0 352 50 0.142
Apache Ivy 2.1.0 357 49 0.137
Apache Ivy 2.2.0 363 37 0.102
Apache Ivy 2.3.0 451 13 0.029
Apache Ivy 2.4.0 474 17 0.036

Table: Total number of classes, number of defective classes and defective rate for
Apache Ivy releases in our study.
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Source Code Feature Extractors

based on static code

warnings produced by the PMD analysis tool [3]

extracted from the AST representation

based on code churn [4, 5, 6]
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Methodology I - RQ1 & RQ2
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Methodology II - RQ1 & RQ2

Stage 1 - Seft Organizing Maps : unsupervised learning model connected to artificial
neural network literature used for dimensionality reduction and for visualizing
high-dimensional data; they are trained to produce an output map which is a
low-dimensional (usually two-dimensional) representation of a high-dimensional input
space.

Stage 2 - Univariate feature selection : works by assigning scores to features based on
univariate statistical tests and then selecting the best features (with the highest scores);
it uses F-test for feature scoring and selects the features according to the K highest
scores

Stage 3 - Software engineering perspective : manually examined the commit history of
the determined clusters of defective application
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Experimental Results I

Table: Clusters obtained during the first three recursive calls of the procedure
depicted in the described algorithm.

Recursive Set of # of SOM Detected clusters
call defects (D) defects

C1 = {0-188, 0-82, 0-70}
1 Ivydefects 177 Figure 1(a) C2 = {3-0, 2-2 }

C3 = {1-9, 1-25, 1-21, 2-27, 2-23, 2-11, 2-34, 3-21, 4-44, 5-17, 5-32}
C4 = Ivydefects \ C1 \ C2 \ C3

C3.1 = {2-34}
2 C3 11 Figure 1(b) C3.2 = {5-32, 5-17, 4-44}

C3.3 = {1-9, 1-21, 1-25, 2-11, 2-23, 2-27, 3-21}
C3.3.1 = {1-21, 1-25, 2-27}
C3.3.2 = {3-21}

3 C3.3 7 Figure 1(c) C3.3.3 = { 2-11 }
C3.3.4 = {2-23 }
C3.3.5 = {1-9}

G. Czibula et al. KES September 21, 2023 14 / 21



Experimental Results II
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Experimental Results III
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Discussion - RQ3
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Conclusions and Future Enhancements

Conclusions:

the results correlate with the human approach when categorizing
defects

models tailored for specific types of defects can improve accuracy

by creating tailored models, we could accelerate the adoption of
software defect prediction approaches by the industry

Future Enhancements:

extend experiments on other Apache projects

consider the impact of feature selection and alternative feature-based
representations of the software entities

build supervised defect predictors for the specific types of defects
detected here
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Thank you!

Q&A
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