A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software of software classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and discussion

Conclusions

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

Anamaria Briciu, Gabriela Czibula, Mihaiela Lupea

Department of Computer Science, Babeş-Bolyai University Cluj-Napoca, Romania

language models for enhancing the performance of software defect

classifiers A. Briciu, G. Czibula and M. Lupea

A study on the relevance

of semantic features extracted using BERT-based

Introduction Background Methodology Results and

Conclusions

1 Introduction

2 Background

3 Methodology

4 Results and discussion

features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A study on the relevance

of semantic

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background Methodology Results and discussion

Conclusions

1 Introduction

2 Background

B Methodology

4 Results and discussion

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background

Methodology

Results and discussion

Conclusions

Software defect prediction

Identifying the software entities (classes, modules, methods, functions, etc.) that are defective in a new version of a software system

Relevance:

- improvement of software quality
- ease software maintenance and evolution

Proposed study

the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A study on

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Methodology

Results and discussion

Conclusions

Investigate the relevance of source code representations automatically learned using pre-trained language models.

Contributions

- examining the discriminating power of extracted BERT-based embeddings in the context of software defect prediction
- 2 analysis of the capacity of natural language patterns to discriminate between defective and non-defective instances
- novel evaluation strategy

Research questions

language models for enhancing the performance of software defect classifiers

A study on the relevance

of semantic features extracted using BERT-based

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background Methodolog Results and

RQ1 What is the relevance of the programming language-specific information learned by source code-based pre-trained models compared to the features encoded by natural-language based pre-trained models in a task of SDP?

RQ2 To what extent does the use of deep semantic and contextual features of the source codes extracted using pre-trained BERT-based language models improve the performance of software defect predictors compared to the semantic features learned by natural language-based models such as doc2vec and LSI?

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and discussion

Conclusions

1 Introduction

2 Background

3 Methodology

4 Results and discussion

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software of software classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and discussion

Conclusions

Semantic features used for SDP

- Abstract Syntax Trees-based representations [WLT16, WLNT18, MHX⁺20, DPN⁺19]
- graph-based representations [PLNB17]
- token embeddings [HYLZ18, ULA⁺22] and document embeddings [MTC22]

Classification models

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and discussion

- CNN [MHX+20, PLNB17]
- LSTM, BiLSTM [DPN+19, MVAK+20, ULA+22, LL21]
- DBN [WLT16, WLNT18]
- BERT fine-tuning [PLX21]

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background Methodology

Results and discussion

Conclusions

1 Introduction

2 Background

3 Methodology

4 Results and discussion

Case study

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and discussion

Conclusions

The Apache Calcite data set is used [BCRH⁺18].

- 16 versions (1.0.0 1.15.0)
- ground truth labels for all included application classes:
 - + = defective
 - = non-defective
- Data imbalance: defective rate varies from 0.033 (version 1.15.0) to 0.166 (version 1.0.0)

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introductio

Methodology

Results and discussion

Conclusions

Formalization of the SDP problem

Formalization as a supervised binary classification problem.

- an object-oriented software system S = {c₁, c₂,..., c_n} consisting of software entities (i.e. application classes)
- software entities characterized by *m* features: *f*₁,... *f_m* → each application class *c_i*, 1 ≤ *i* ≤ *n* is represented by a high dimensional numerical vector *c_i* = (*c_i*₁,..., *c_{im}*), where *c_{ij}* (∀1 ≤ *j* ≤ *m*) is the value of the feature *f_j* computed/learned for the application class *c_i*.
- **GOAL**: predict if a certain software entity is likely to belong to the + or target class

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Background

Methodology

Results and discussion

Conclusions

Data representation

Source code embeddings obtained using 2 BERT-based models: RoBERTa-base (a natural language model) & CodeBERT-base-MLM (a programming language model).

Feature extraction approach

- 1 Remove comments, documentation
- Tokenize source code files (maximum length = 512, padding and truncation applied)
- Extract last hidden layer representations from BERT model (512x768)
- Apply mean pooling to obtain a representation for the entire input sequence

The SDP classifier

the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A study on

A. Briciu, G.
Czibula and
M. Lupea

Introductio

Methodology

Results and discussion

Conclusions

The SDP classifier used is based on an artificial neural network (ANN).

- architecture: 768 (input) 128 32 16 1 (output)
 - hidden layers: ReLU activation function
 - output layer: sigmoid activation function
 - to account for data imbalance: class weights
 - early stopping criterion based on AUPRC value on the validation set

Training & classification

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software of software

A. Briciu, G.
Czibula and
M. Lupea

Background

Methodology

Results and discussion

Conclusions

Follow the historical evolution of the Calcite software and assess the real-life defect prediction capabilities of the classifier.

- train ANN on the application classes from versions 0..k
 - 80% will be used for training
 - 20% will be used for validation
- **test** on version k + 1 ($\forall k, 0 \le k \le 14$).

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction

Background

Methodology

Results and discussion

Conclusions

Testing & evaluation: Evaluation

After classification, the *TP* (true positive), *TN* (true negative), *FP* (false positive) and *FN* (false negative) are reported in a confusion matrix.

Metrics used:

- **PPV** (precision for the positive class) = $\frac{TP}{TP+FP}$
- **POD** (probability of detection) = $\frac{TP}{TP+FN}$
- Spec (specificity or true negative rate) = $\frac{TN}{TN+FP}$
- FAR (false alarm ratio) = $\frac{FP}{TP+FP}$
- CSI (critical success index) = $\frac{TP}{TP+FN+FP}$
- AUC (Area under the ROC curve) = $\frac{POD+Spec}{2}$
- MCC (Matthews Correlation Coefficient) = $\frac{TP \cdot TN FP \cdot FN}{\sqrt{(TP + FP) \cdot (TP + FN) \cdot (TN + FP) \cdot (TN + FN)}}$
- F1 (F-score for the positive class) = $\frac{2 \cdot PPV \cdot POD}{PPV + POD}$.

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background Methodology

Results and discussion

Conclusions

1 Introduction

2 Background

B Methodology

4 Results and discussion

Results (I)

Version	Model used for	TP	FP	ΤN	FN	PPV (†)	POD (†)	Spec (\uparrow)	FAR (\downarrow)	$CSI(\uparrow)$	AUC (\uparrow)	$MCC(\uparrow)$	F1 (†)
k	code embedding												
	RoBERTa	50	136	854	63	0.269	0.442	0.863	0.731	0.201	0.653	0.247	0.334
1.0.0	CodeBERT-MLM	69	97	893	44	0.416	0.611	0.902	0.584	0.329	0.756	0.435	0.495
	RoBERTa	109	60	922	17	0.645	0.865	0.939	0.355	0.586	0.902	0.775	0.739
1.1.0	CodeBERT-MLM	100	24	958	26	0.806	0.794	0.976	0.194	0.667	0.885	0.753	0.800
	RoBERTa	98	43	960	14	0.695	0.875	0.957	0.305	0.632	0.916	0.681	0.775
1.2.0	CodeBERT-MLM	106	88	915	6	0.546	0.946	0.912	0.454	0.530	0.929	0.643	0.693
1.3.0	RoBERTa	100	72	932	23	0.581	0.813	0.928	0.419	0.513	0.871	0.643	0.678
	CodeBERT-MLM	105	136	868	18	0.436	0.854	0.865	0.654	0.405	0.859	0.546	0.577
	RoBERTa	87	112	961	16	0.437	0.845	0.896	0.563	0.405	0.870	0.558	0.576
1.4.0	CodeBERT-MLM	101	312	761	2	0.245	0.981	0.709	0.755	0.243	0.845	0.409	0.391
1.5.0	RoBERTa	99	113	973	8	0.467	0.925	0.896	0.533	0.450	0.911	0.614	0.621
	CodeBERT-MLM	90	68	1018	17	0.570	0.841	0.937	0.430	0.514	0.889	0.656	0.679
	RoBERTa	109	90	1034	19	0.548	0.852	0.920	0.452	0.500	0.886	0.639	0.667
1.6.0	CodeBERT-MLM	93	45	1079	35	0.674	0.727	0.960	0.326	0.538	0.843	0.664	0.699
1.7.0	RoBERTa	71	125	1075	30	0.362	0.703	0.896	0.638	0.314	0.799	0.448	0.478
	CodeBERT-MLM	95	113	1087	6	0.457	0.941	0.906	0.543	0.444	0.923	0.618	0.615
	RoBERTa	81	155	1065	9	0.343	0.900	0.873	0.657	0.331	0.886	0.509	0.497
1.8.0	CodeBERT-MLM	82	127	1093	8	0.392	0.911	0.896	0.608	0.378	0.904	0.557	0.548
	RoBERTa	81	166	1060	3	0.328	0.964	0.865	0.672	0.324	0.914	0.519	0.489
1.9.0	CodeBERT-MLM	80	114	1112	4	0.412	0.952	0.907	0.588	0.404	0.930	0.593	0.576
	RoBERTa	61	91	1160	19	0.401	0.763	0.927	0.599	0.357	0.845	0.515	0.526
1.10.0	CodeBERT-MLM	61	73	1178	19	0.455	0.763	0.942	0.545	0.399	0.852	0.556	0.570
	RoBERTa	60	95	1239	21	0.387	0.741	0.929	0.613	0.341	0.835	0.498	0.508
1.11.0	CodeBERT-MLM	69	182	1152	12	0.275	0.852	0.864	0.725	0.262	0.858	0.435	0.416
	RoBERTa	47	156	1066	6	0.232	0.887	0.872	0.768	0.225	0.880	0.414	0.367
1.12.0	CodeBERT-MLM	48	142	1080	5	0.253	0.906	0.884	0.747	0.246	0.895	0.442	0.395
	RoBERTa	42	107	1148	11	0.282	0.792	0.915	0.718	0.263	0.854	0.439	0.416
1.13.0	CodeBERT-MLM	42	108	1147	11	0.280	0.792	0.914	0.720	0.261	0.853	0.437	0.414
	RoBERTa	42	157	1150	3	0.211	0.933	0.880	0.789	0.208	0.907	0.412	0.344
1.14.0	CodeBERT-MLM	40	152	1155	5	0.208	0.889	0.884	0.792	0.203	0.886	0.397	0.338

Table: Experimental results. For each testing case (the SDP classifier trained on all Calcite releases from 0 to k, then tested on version k + 1) and two code embeddings (generated using RoBERTa and CodeBERT-MLM), the obtained confusion matrix and the metrics values are provided.

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Background

Methodology

Results and discussion

Discussion (I)

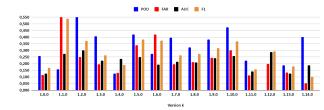
- A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software of software classifiers
- A. Briciu, G. Czibula and M. Lupea
- Introduction Background Methodology
- Results and discussion
- Conclusions

- good performance of the SDP classifier for the **defect** class for most test configurations
- classifier trained on CodeBERT-MLM representations outperforms the one trained on RoBERTa representations
- RoBERTa-based model achieved comparable results

Results (II)

Difficulty	Model used to				k (Traini	ng data fr	a from Calcite release 1.k.0. testing data from Calcite release 1.k+1.0)											
	learn features	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
Defect class	doc2vec+LSI [MTC22]	0.684	0.681	0.692	0.686	0.690	0.687	0.688	0.694	0.688	0.687	0.690	0.691	0.696	0.691	0.692		
	CodeBERT-MLM	0.436	0.372	0.378	0.371	0.363	0.340	0.318	0.336	0.350	0.341	0.338	0.351	0.352	0.350	0.343		
Non-Defect class	doc2vec+LSI [MTC22]	0.095	0.089	0.088	0.085	0.079	0.076	0.076	0.072	0.068	0.064	0.062	0.060	0.057	0.055	0.052		
	CodeBERT-MLM	0.093	0.087	0.081	0.081	0.072	0.062	0.058	0.055	0.052	0.052	0.051	0.047	0.047	0.047	0.044		
Overall	doc2vec+LSI [MTC22]	0.174	0.164	0.160	0.156	0.148	0.143	0.142	0.137	0.130	0.124	0.120	0.117	0.112	0.108	0.103		
	CodeBERT-MLM	0.139	0.123	0.117	0.115	0.105	0.092	0.086	0.084	0.082	0.079	0.078	0.075	0.073	0.072	0.068		

Table: Difficulty values for all fifteen testing configurations, for two representations: based on doc2vec+LSI, and learned by CodeBERT-MLM.



 $\label{eq:Figure: Classification improvement of CodeBERT-MLM representations over doc2vec+LSI representations in all testing configurations.$

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introductio

Methodology

Results and discussion

Discussion (II)

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Background Methodology

Results and discussion

Conclusions

Same training & testing methodology used for the doc2vec and LSI representations introduced in [MTC22].

- significant differences in computed difficulty values for the positive (defect) class
- overall descending trend: highest difficulty obtained for testing configuration with k = 0
- considerable improvements observed when using BERT-based features as opposed to doc2vec+LSI features [MTC22]

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background Methodology Results and

Conclusions

1 Introduction

2 Background

3 Methodology

4 Results and discussion

Conclusions

 CodeBERT-MLM model, trained on source codes, provided more effective representations for detecting software defects than a model that focuses on natural language, such as RoBERTa

A study on the relevance

of semantic features extracted using BERT-based language

models for enhancing the

performance of software

defect

A. Briciu, G.

Czibula and M. Lupea

- the semantic and contextual features extracted by the pre-trained CodeBERT-MLM model better at discriminating between defective and non-defective source codes, compared to the features encoded in the source code semantic representations learned by doc2vec and LSI (two natural language-based models that learn only from the analyzed input source codes)
- **future work:** add comments from the source code and/or other software artifacts

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Background

Results and discussion

Conclusions

Bibliography

Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and Daniel Lemire. Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources. In *SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data*, SIGMOD '18, pages 221–230, New York, NY, USA, 2018. Association for Computing Machinery.

Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya Ghose, Taeksu Kim, and Chul-Joo Kim.

Lessons learned from using a deep tree-based model for software defect prediction in practice.

In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pages 46–57. IEEE, 2019.

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background Methodology Results and

Conclusions

Xuan Huo, Yang Yang, Ming Li, and De-Chuan Zhan. Learning semantic features for software defect prediction by code comments embedding. In 2018 IEEE International Conference on Data Mining.

In 2018 IEEE International Conference on Data Mining (ICDM), pages 1049–1054, 2018.

Junhao Lin and Lu Lu.

Semantic feature learning via dual sequences for defect prediction.

IEEE Access, 9:13112-13124, 2021.

Shi Meilong, Peng He, Haitao Xiao, Huixin Li, and Cheng Zeng.

An approach to semantic and structural features learning for software defect prediction.

Mathematical Problems in Engineering, 2020:1–13, 2020.

Diana-Lucia Miholca, Vlad-Ioan Tomescu, and Gabriela Czibula.

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software of software classifiers

A. Briciu, G.
Czibula and
M. Lupea

Introduction Background Methodology Results and

Conclusions

An in-depth analysis of the software features' impact on the performance of deep learning-based software defect predictors.

IEEE Access, 10:64801-64818, 2022.

 Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalilian, Pooria Poorsarvi-Tehrani, and Hassan Haghighi.
Sldeep: Statement-level software defect prediction using deep-learning model on static code features.

Expert Systems with Applications, 147:113156, 2020.

Anh Viet Phan, Minh Le Nguyen, and Lam Thu Bui. Convolutional neural networks over control flow graphs for

Convolutional neural networks over control flow graphs for software defect prediction.

In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pages 45–52. IEEE, 2017.

Cong Pan, Minyan Lu, and Biao Xu. An empirical study on software defect prediction using CodeBERT model.

Applied Sciences, 11(11):Article No. 4793, 2021.

A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers

A. Briciu, G.
Czibula and
M. Lupea

Background

Methodology

Results and discussion

Conclusions

Md Nasir Uddin, Bixin Li, Zafar Ali, Pavlos Kefalas, Inayat Khan, and Islam Zada.

Software defect prediction employing bilstm and bert-based semantic feature.

Soft Computing, 26(16):7877-7891, 2022.

Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature learning for software defect prediction.

IEEE Transactions on Software Engineering, 46(12):1267–1293, 2018.

Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for defect prediction.

In Proceedings of the 38th International Conference on Software Engineering, pages 297–308, 2016.