Closed patterns and abstraction beyond lattices but not so far

Henry Soldano

LIPN, Université Paris 13, Sorbonne Paris Cité, France

ICFCA - June 2014

- Preliminaries and intuition
- Pre-confluences and their closure subsets
- 4 The pre-confluence of support-closed motifs w.r.t. a set of objects
- 5 Galois pre-confluences as union of Galois (and concept) lattices
- 6 Extensional abstractions on confluences*
 - Implication bases, algoritmics, ...

Purpose of the paper

- Preliminaries and intuition
- Pre-confluences and their closure subsets
- 4 The pre-confluence of support-closed motifs w.r.t. a set of objects
- 5 Galois pre-confluences as union of Galois (and concept) lattices
- Extensional abstractions on confluences
 - Implication bases, algoritmics, ...

Recent work on closed patterns in data mining

Closed patterns w.r.t. a set of objects in $F \subseteq 2^X$ can be obtained using a closure operator on F even when F has a structure weaker than a lattice

(Boley and Coll., TCS 2010).

Definition

- $F \subseteq 2^P$ is a confluent family iff
 - $\emptyset \in F$, and
 - for all $t, t_1, t_2 \in F$ with $\emptyset \neq t, t_1 \supseteq t, t_2 \supseteq t$, we have:

 $t_1 \cup t_2 \in F$

The set of subsets of edges inducing *connected* subgraphs of some graph*G* is a confluent family. : if an edge *x* belongs both to the connected subgraphs induced by X_1 and X_2 then the subgraph induced by $X_1 \cup X_2$ is also connected.

We investigate partial orders equipped with a local meet operator, we call pre-confluences.

- A nice result on sets of closed elements in a pre-confluence
- Existence closed elements w.r.t a set of objects in a pre-confluence
 - What is the structure of the set of closed elements ?
 - How is this structure related to FCA ?

Purpose of the paper

Preliminaries and intuition

- Pre-confluences and their closure subsets
- 4 The pre-confluence of support-closed motifs w.r.t. a set of objects
- 5 Galois pre-confluences as union of Galois (and concept) lattices
- Extensional abstractions on confluences
 - Implication bases, algoritmics, ...

- Element of a partially ordered language *L* = pattern = motif
- attribute, property = item
- an object *o* = entry in a database
- ext(t) = support(t) w.r.t. a database O

Let F be a pattern language

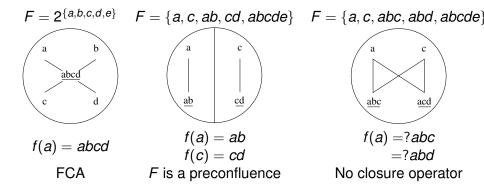
Definition (Support-closed motifs)

- $t \equiv_O t'$ iff ext(t) = ext(t')
- The maximal elements of the equivalence classes are the support-closed elements.

Are support-closed elements obtained as closed elements w.r.t some closure operator on F ?

Example

Objects are described as elements of $2^{\{a,b,c,d,e\}}$ $F \subseteq 2^{\{a,b,c,d,e\}}$, $O = \{o\}$ d(o) = abcd



Closed patterns and abstraction beyond lattice

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Purpose of the paper
- Preliminaries and intuition
 - Pre-confluences and their closure subsets
- 4 The pre-confluence of support-closed motifs w.r.t. a set of objects
- 5 Galois pre-confluences as union of Galois (and concept) lattices
- Extensional abstractions on confluences'
 - Implication bases, algoritmics, ...

Closure subsets of a finite lattice

Definition

Let *E* be an ordered set and $f : E \to E$ such that for any $x, y \in E$, $x \le y \implies f(x) \le f(y), f(f(x)) = f(x)$, then:

- If $f(x) \ge x$, f is a closure operator
- If $f(x) \le x$, f is a dual closure operator or a projection

If *f* is a closure operator, any x = f(x) is called a closed element A closure subset is the range f[E] of some closure operator *f*.

Theorem (T.S. Blyth)

Let T be a finite lattice.

- C ⊆ T is a closure subset if and only if C is closed under meet.
- $A \subseteq T$ is a dual closure subset if and only if A is closed under join.

A dual closure subset of T is associated to a projection and is also called an abstraction.

Henry Soldano (Paris Nord)

Closed patterns and abstraction beyond lattice

ICFCA - June 2014 11 / 28

Pre-confluences

Definition

Let F be an ordered set s.t.

• for any $t \in F$, $\uparrow t$ is a \land -semilattice and has a top element.

F is a pre-confluence, $x \wedge_t y$ is a local meet

Lemma

Let F be a pre-confluence, then for any t in F and $x, y \in \uparrow t$

• $\uparrow t$ is a lattice with as join $x \vee_F y$, the least element of $\uparrow x \cap \uparrow y$

Lemma

F is a pre-confluence if and only if for any $m \in \min(F)$, $\uparrow m$ is a \land -semilattice and has a top element.

A lattice is a pre-confluence with an infimum

Henry Soldano (Paris Nord)

Closed patterns and abstraction beyond lattice

ICFCA - June 2014

Definition

A subset C of a pre-confluence F is said closed under local meet whenever for any t in F, c_1, c_2 in C s.t. $c_1 \ge t$ and $c_2 \ge t$, we have

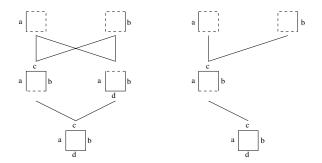
 $c_1 \wedge_t c_2$ belongs to C.

Theorem

Let F be a pre-confluence.

- $C \subseteq F$ is a closure subset iff C is closed under local meet.
- C is a pre-confluence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



A family *F* of connected subgraphs each generated by a subset of the edges $\{a, b, c, d\}$ of the original graph.

•
$$a = abc \wedge_a abd$$
, $b = abc \wedge_b abd$

• *C* = {*a*, *b*, *abc*, *abcd*} is closed under local meet and *f* is Identity except that *f*(*abd*) = *abcd*, the least element of *C* greater than or equal to *abd*.

- Purpose of the paper
- Preliminaries and intuition
 - Pre-confluences and their closure subsets
- The pre-confluence of support-closed motifs w.r.t. a set of objects
- Galois pre-confluences as union of Galois (and concept) lattices
- Extensional abstractions on confluences
 - Implication bases, algoritmics, ...

The lattice case

Proposition (Diday & Emilion, 2003)

Consider the following conditions:

- T is a finite lattice
- For any o ∈ O, there is a greatest element d(o) in T among those whose extension contains o

then, the pair (int, ext) where

$$\mathit{int}(e) = igwedge_{\{o \in e\}} d(o)$$

is a Galois connection.

int(*e*) is the intension of *e*, $f : f(t) = int \circ ext(t)$ is a closure operator. The pairs (f(t), ext(t)) form a lattice isomorphic to f[T]Same as the Pattern Structures framework

The pre-confluence case

Proposition

Consider the following conditions:

- F is a pre-confluence
- For any o ∈ O and any t in F s.t o ∈ ext(t), there is a greatest element d_t(o) in the up set ↑t among those whose extension contains o

then, for any t in F, the pair (int_t, ext) where

$$\mathit{int}_t(e) = \bigwedge_{t \ \{o \in e\}} d_t(o)$$

is a Galois connection.

 $int_t(e)$ is a local intension of e, $f : f(t) = int_t \circ ext(t)$ is a closure operator. The pairs (f(t), ext(t)) form a pre-confluence isomorphic to f[F]

Henry Soldano (Paris Nord)

Closed patterns and abstraction beyond lattice

ICFCA - June 2014

- Purpose of the paper
- 2 Preliminaries and intuition
- Pre-confluences and their closure subsets
- The pre-confluence of support-closed motifs w.r.t. a set of objects
- 5 Galois pre-confluences as union of Galois (and concept) lattices
- Extensional abstractions on confluences
 - Implication bases, algoritmics, ...

Objects are described as elements of a lattice $T \supseteq F$

Let T be a lattice, and $F \subseteq T$. Typically $T = 2^{P}$.

An object is described as an element of T, and any element of T may represent an object.

```
If d(o) = x, o \in ext(t) rewrites as x \ge t
```

Proposition

Let F be a subset of T, these conditions are equivalent:

- For any x in T and any t in F s.t $x \ge t$, there is a greatest element $p_t(x)$ in the up set $\uparrow t$ (in F) among those smaller than or equal to t.
- **2** *F* is a pre-confluence with join $\lor_F = \lor$

F is then denoted as a confluence* of T

Lemma

 p_t is a projection on $T^t = \{y \in T | y \ge t\}$

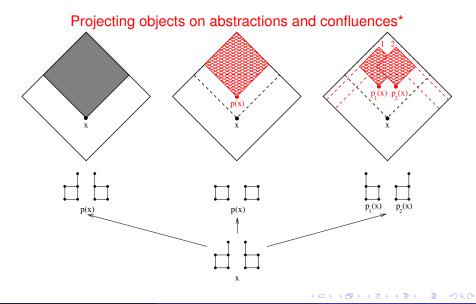
An abstraction is a confluence* with an infimum and an approximately a second s

Henry Soldano (Paris Nord)

Closed patterns and abstraction beyond lattice

ICFCA - June 2014

From lattices to confluences*



Henry Soldano (Paris Nord) Closed patterns and abstraction beyond lattice

ICFCA - June 2014 20

Galois pre-confluence as a union of concept lattices

This leads to a result close to the result of Boley and Coll.

Proposition

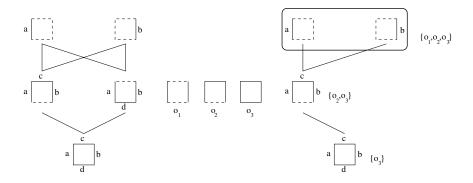
Let $F \subseteq T$, the closure operator on F with respect to any set O of objects described in T exists if and only if F is a confluence^{*}.

- The closure operator is defined by $f(t) = p_t \circ int \circ ext(t)$
- As *p_t* is a projection, (*p_t* ∘ *int*, *ext*) defines a projected concept lattice on ↑*t* (Pernelle et al, 2002, Ganter and Kuznetsov, 2001).
- The closure subset *f*[*F*] rewrites then as

$$\bigcup_{m \in min(F)} f[\uparrow m$$

21/28

where each $f[\uparrow m]$ is the closure subset isomorphic to the projected concept lattice associated to p_m .



On the left the pre-confluence F

On the right the Galois pre-confluence f[F] with respect to $\{o_1, o_2, o_3\}$.

- *abc* and *abcd* are the greatest connected subgraphs whose extensions are respectively {o₂, o₃} and {o₃}.
- *a* and *b* are the bottom elements of $f[\uparrow a]$ and $f[\uparrow b]$.

The box around *a* and *b* means that *a* and *b* have the same extension $\{o_1, o_2, o_3\}$.

- Purpose of the paper
- 2 Preliminaries and intuition
- Pre-confluences and their closure subsets
- 4 The pre-confluence of support-closed motifs w.r.t. a set of objects
- Galois pre-confluences as union of Galois (and concept) lattices
- 6 Extensional abstractions on confluences*
 - Implication bases, algoritmics, ...

An extensional abstraction is a dual closure subset A of 2^O and leads to an extensional abstract (concept) lattice in which extensions are restricted to elements of A (Soldano & Ventos, 2011). Extensional abstract pre-confluences are defined in the same way:

Proposition

Let F be a confluence* of a lattice T, $A = p_A(2^O)$ an abstraction of 2^O , then:

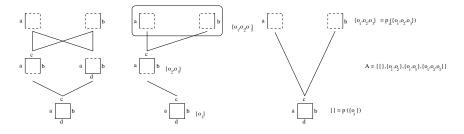
 $f_A(t) = p_t \circ int \circ p_A \circ ext(t)$ is a support closure operator on F with respect to A and $f_A[F]$ is a pre-confluence.

Abstract closed patterns exists in confluences*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

F is represented on the left, $O = \{o_1, o_2, o_3\}$, $A = \{\emptyset, \{o_1, o_2\}, \{o_1, o_3\}\{o_1, o_2, o_3\}\}$ with $d(o_1) = ab, d(o_2) = abc, d(o_3) = abcd$ The abstract Galois pre-confluence $f_A[F]$ is displayed on the right



 $p_A \circ ext(a) = p_A \circ ext(b) = \{o_1, o_2, o_3\}$ as in the non abstract case, but $p_A \circ ext(abc) = p_A(\{o_2, o_3\}) = \emptyset$ and therefore $f_A(abc) = abcd$

- Purpose of the paper
- 2 Preliminaries and intuition
- Pre-confluences and their closure subsets
- 4 The pre-confluence of support-closed motifs w.r.t. a set of objects
- 5 Galois pre-confluences as union of Galois (and concept) lattices
- Extensional abstractions on confluences
- Implication bases, algoritmics, ...

Implication bases, algorithmics ...

 $p \rightarrow q$ holds on *O* iff $ext(p) \subseteq ext(q)$

Definition (Min-max basis of implications)

Let F be a confluence* and f the closure operator w.r.t. O

- The min-max basis $B = B_i \cup B_e$ of implications in F is the set $\{p \rightarrow q \mid ext(p) = ext(q) = e, p \neq q, p \text{ is minimal }, q \text{ is closed }\}$
- The internal sub basis B_i contains $p \rightarrow q$ where $p \leq q$
- The external sub basis B_e contains p → q where {p, q} are unordered.

Example

- \bullet Internal implication $1-2-3 \rightarrow 1-2-3-4$
- External implication $1-2-3 \rightarrow 7-8-9$

PARAMINER (Negrevergne et al, 2014) computes efficiently frequent closed patterns in *strongly accessible* confluent families (between two elements of F there must be a path of attributes within F).

Conclusion

We have reported that support-closure operators on partial orders *F* relying on local meet operators exist and we have connected to FCA by

- extending the results on closure subsets to pre-confluences
- showing that support-closed elements form a pre-confluence made of a union of concept lattices
- showing that extensional abstraction applies to Galois pre-confluences

- Different from defining closure operators on 2^{F} (as in (Kuznetsov and Samokhin, 2005) or on mappings (see recent work (J. Medina-Moreno and Coll. 2013) on multilattices).

- Many open computational and formal problems (building diagrams, implication basis construction, ...)

- and more philosophical question about concepts (one extent, several intents ?)

Henry Soldano (Paris Nord)

Closed patterns and abstraction beyond lattice

ICFCA - June 2014