

A proposition for combining pattern structures and RCA. ICFCA 2014

Victor Codocedo, Amedeo Napoli

Introduction

Featuring in this presentation:

- Latent Variable models [8].
- Latent Semantic Indexing [2].
- Relational Concept Analysis [9].
- Interval Pattern Structures [7].
- Heterogeneous Pattern Structures.

Problem definition

Ínría

Victor Codocedo, Amedeo Napoli – Pattern Structures and RCA

Latent variables model

Latent variables models (LV-models) (also called "topic models") use the notion of hidden latent variables in data to "explain" information [2].

Latent variables model

Latent variables models (LV-models) (also called "topic models") use the notion of hidden latent variables in data to "explain" information [2].

They work by **unveiling** these variables and using them to process data.

Latent models available:

- Principal Component Analysis (PCA) (1901) [8].
- Latent Semantic Indexing/Analysis (LSI/LSA) (1988) [2].
- Probabilistic Latent Semantic Indexing (PLSA) (1999) [6].
- Latent Dirichlet Allocation (LDA) (2003) [1].

Why are latent variables useful? [2, 10, 8] Several things:

- They can introduce "latent knowledge" not explicit in data.
- They can reduce noise.
- They can reduce the search space.
- They can reduce sparsity.
- They can represent "clusters".

Latent Semantic Indexing

LSI is based on the *lower-rank* approximation of a document-term* matrix and the representation of documents in a vectorial space of latent variables. For both of these issues, it uses the *Singular Value Decomposition* process.

	patient	laparoscopy	scan	user	medicine	response	time	MRI	practice	complication	arthroscopy	infection
g1	0.25	0.25	0.25	0	0	0	0	0	0	0.25	0	0
g2	0	0	0.16	0.16	0.16	0.16	0.16	0	0.16	0	0	0
g3	0	0.25	0	0.25	0.25	0	0	0.25	0	0	0	0
g4	0.3	0	0	0	0.3	0	0	0.3	0	0	0	0
g ₅	0	0	0	0.3	0	0.3	0.3	0	0	0	0	0
g ₆	0	0	0	0	0	0	0	0	0.5	0	0.5	0
g7	0	0	0	0	0	0	0	0	0	0.5	0.5	0
g8	0	0	0	0	0	0	0	0	0	0.3	0.3	0.3
g9	0	0	0	0	0	0	0	0	0	0	0.5	0.5

Table: Document-term matrix A.

Latent Semantic Indexing SVD Process:

$$A_{(9\times 12)} = U_{(9\times 9)} \cdot \Sigma_{(9\times 12)} \cdot V_{(12\times 12)}^{T}$$
(1)

$$\tilde{A}_{(9\times 12)} = U_{(9\times k)} \cdot \Sigma_{(k\times k)} \cdot V_{(k\times 12)}^{T} \quad (\text{with } k \ll \min(9, 12))$$

$$A \sim \tilde{A}$$
(3)

$$\tilde{A} \cdot \tilde{A}^{T} = U_{(9 \times k)} \cdot \Sigma_{(k \times k)} \cdot V_{(k \times 12)}^{T} \cdot V_{(12 \times k)} \cdot \Sigma_{(k \times k)}^{T} \cdot U_{(k \times 9)}^{T}$$
(4)
$$\tilde{A} \cdot \tilde{A}^{T} = (U_{(9 \times k)} \cdot \Sigma_{(k \times k)}) \cdot (U_{(9 \times k)} \cdot \Sigma_{(k \times k)})^{T}$$
(5)

	k1	k2
g1	0.118	-0.238
g2	0.046	-0.271
g3	0.014	-0.413
g4	0.014	-0.368
g 5	0.008	-0.277
g6	0.519	0.002
g7	0.603	-0.017
g8	0.469	0.02
g9	0.588	0.092

Table: Documents in 2 LVs. (k=2)

Ínnía

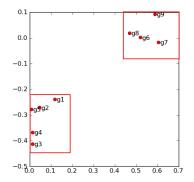
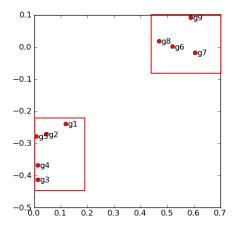


Figure: Graphical representation of documents as points in a 2 dimensional LV space.

Where are the semantics?



Victor Codocedo, Amedeo Napoli – Pattern Structures and RCA

Where are the semantics?

- Latent variables are abstractions.
- A given LV or a convex region in a LV-space can represent a topic, but they lack a proper characterization.
- Cannot introduce external knowledge sources.

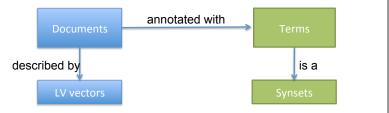
Formal Concept Analysis [4], on the other hand:

- Provides a formal characterization of concepts through the dual extent/intent descriptions.
- Allows the introduction of external knowledge sources through object relations (RCA).
- Allows the analysis of complex data such as convex regions in a vectorial space (interval pattern structures).

Ínría

Victor Codocedo, Amedeo Napoli – Pattern Structures and RCA

Can we relate convex regions in a LV-space to taxonomical objects?



In fact, this scenario fits with the Relational Concept Analysis process.

Relational Concept Analysis (RCA) [9]

RCA describes an iterative scaling process to obtain a family of related concept lattices from a relational context family.

	k1	k2
g1	×	
g2		×
g3		×
g4	×	×
g5		×
g6		×
g7	×	
g8	×	×
g9	×	

Table: Formal Context $\mathcal{K}_1 = (G_1, M_1, I_1)$

	patient	laparoscopy	scan	user	medicine	response	time	MRI	practice	complication	arthroscopy	infection
g1	×	×	×							×		
g2			×	×	×	×	×		×			
g3		×		×	×			×				
g4	×				×			×				
g5				×		×	×					Π
g6									×		×	П
g7										×	×	П
g8										×	×	X
g9											×	×

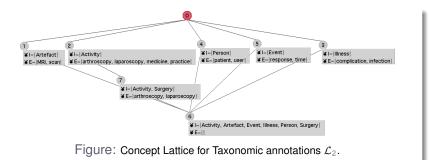
Table: Relational Context $aw = (G_1, G_2, I_{aw})$

	Person	Surgery	Illness	Artefact	Event	Activity
patient	×					
laparoscopy		×				Х
scan				×		
user	×					
medicine						Х
response					×	
time					×	
MRI				×		
practice						×
complication			×			
arthroscopy		\times				×
infection			\times			

Table: Formal Context $\mathcal{K}_2 = (G_2, M_2, I_2)$

Relational Concept Analysis (RCA)

- A relational context family (RCF) is composed by:
 - A set of formal contexts $\mathbf{K} = \{\mathcal{K}_1, \mathcal{K}_2\}.$
 - A set of binary relations **R** = {aw}.
- A relational context can be also defined as a function aw : G₁ → G₂, where dom(aw) = G₁ and ran(aw) = G₂.
- A set of *relational attributes* is built from the concept lattice of the formal context with objects ran(aw).
- A relational scaling process applied in the formal context with objects dom(aw) assigns a set of relational attributes to an object g ∈ G₁ whenever aw(g) ∩ extent(C) ≠ Ø (∃ quantifier).



RCA - Relational Scaling

Inría

$$aw(g_1) \cap extent(C4) = \{patient, user\}$$
$$\implies \mathcal{K}_1^{(1)} = (G_1, M_1 \cup \{aw: C4\}, I_1 \cup \{(g_1, aw: C4)\})$$

Relational Concept Analysis

- Formal concepts in $\mathcal{K}_1^{(1)}$ have intents which relate LV with taxonomical annotations in \mathcal{K}_2 .
- Nevertheless, K₁ is a many-valued context. Convex regions in a LV-space are better described with interval pattern structures [3, 7].
- What happens if we apply relational scaling in a many-valued formal context?

		D	Pr								
			: C1	: C2	: C3	: C4	: C5	: C6	: c7		
	k1	k2	аw	aw	aw	аw	aw	aw	aw		
<i>g</i> ₁	0.118	-0.238	×	×	×	×			×		
<i>g</i> ₂	0.046	-0.271	×	×		×	×				
g_3	0.014	-0.413	×	×		×			×		
<i>g</i> ₄	0.014	-0.368	×	×		×					
g_5	0.008	-0.277				×	×				
g_6	0.519	0.002		×	×				×		
g 7	0.603	-0.017		×	×				×		
g_8	0.469	0.02		×	×				×		
g_9	0.588	0.092		×	×				×		

Table: Heterogeneous formal context.

Problems

- Objects are described by heterogeneous patterns mixing values and binary attributes.
- It becomes necessary to define a proper pattern structure which is able to deal with heterogeneous object descriptions.

Proposition

Relational Scaling for pattern structures

Let a RCF contain a relation r where dom(r) is an object set in a pattern structure $\mathcal{K}_1 = (G_1, (D, \Box), \delta)$, then we define:

- The set of all relational attributes extracted for relation r as $P_r = \{r : C, \forall C \in \mathcal{L}_2\}.$
- An assignation function $\rho_r^\exists: G_1 \to P_r$, such as: $\rho_r^\exists(g) = \{r: C \in P_r \mid r(g) \cap \text{extent}(C) \neq \emptyset\}.$
- An heterogeneous set of descriptions H = D × ℘(P_r).
- A mapping $\Delta^{\exists} : G_1 \to H$, such as $\Delta^{\exists}(g) = (\delta(g), \rho_r^{\exists}(g))$.

Proposition

Relational Scaling for pattern structures

The relational scaling of the pattern structure $(G_1, (D, \Box), \delta)$ is defined as:

$$\operatorname{sc}_{r}^{\exists}(\mathcal{K}_{1}) = (G_{1}, (H, \sqcap_{H}), \Delta^{\exists})$$

Where $(G_1, (H, \square_H), \Delta^{\exists})$ is called a *heterogeneous pattern structure*.

Heterogeneous pattern structures

Properties:

- A heterogeneous object description $h \in H$ is a pair h = (d, B)where $d \in D$ and $B \subseteq P_r$.
- For h₁ = (d₁, B₁) and h₂ = (d₂, B₂), the similarity operator ⊓_H is defined as h₁ ⊓_H h₂ = (d₁ ⊓ d₂, B₁ ∩ B₂).
- With ⊓_H, (H, ⊑) is the *direct product* [4] of the partial orders (D, ⊑) and (P_x, ⊆) and thus, it is an ordered set itself.

Heterogeneous pattern structures

Properties:

• The derivation operators $(\cdot)^{\diamond}$ in $(G_1, (H, \sqcap_H), \Delta^{\exists})$ for $A \subseteq G_1$ and $h \in H$ are defined as:

•
$$\mathbb{A}^{\diamond} = \prod_{g \in \mathbb{A}} \mathbb{A} \Delta^{\exists}(g).$$

$$\cdot$$
 h^{\$\$} = {g \in G₁ \iff h $\sqsubseteq \Delta^{\exists}(g)$ }.

- (A, h) is a heterogeneous pattern concept iff $h^{\diamond} = A$ and $A^{\diamond} = h$.
- $h^{\diamond} = d^{\Box} \cap B'$, where ()^{\Box} is the derivation operator in (G_1 , (D, \Box), δ).

•
$$A^{\diamond\diamond} = A^{\Box\Box} \cap A''.$$

•
$$h^{\diamond\diamond} = (h^{\diamond\Box}, h^{\diamond\prime}).$$

A simple example

What does a heterogeneous concept represent? Consider the set of movies liked by a group of people.

A closed concept of movies liked by a certain group of people.

A simple example

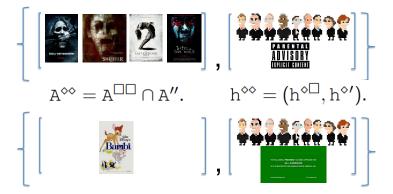
What does a heterogeneous concept represent? Consider the set of movies liked by a group of people.

In a different description space, these movies are separated.

Victor Codocedo, Amedeo Napoli – Pattern Structures and RCA

A simple example

What does a heterogeneous concept represent? Consider the set of movies liked by a group of people.



Heterogeneous concepts catches both spaces together.

Proposition

In our example:

- (G₁, (D, □), δ) is an interval pattern structure of documents described by convex regions in a LV space.
- \mathcal{K}_2 is a formal context of terms and taxonomical annotations (Wordnet synsets).
- $aw: G_1 \rightarrow G_2$ relates documents with a set of annotations (terms).
- An heterogeneous pattern concept (hp-concept) (A, h) describes in its intent a relation between a convex region in the LV space and a set of taxonomical annotation.
- The set of all hp-concepts generates a set of "labelled clusters" in the LV space.

Proposition

In our example:

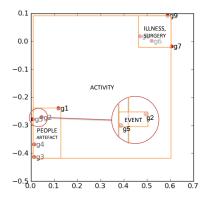


Figure: Labelled document clusters using association rules from the hp-lattice with magnification on documents g_2 and g_5 .

Victor Codocedo, Amedeo Napoli – Pattern Structures and RCA

Discussion

Ínría

Victor Codocedo, Amedeo Napoli – Pattern Structures and RCA

Discussion

Formal Context Constructions

- Direct sum:
 - $\cdot \ \mathcal{K}_1 + \mathcal{K}_2 = (G_1 \cup G_2, M_1 \cup M_2, I_1 \cup I_2 \cup (G_1 \times M_2) \cup (G_2 \times M_1)).$
- Semi-product:
 - · $\mathcal{K}_1 \boxtimes \mathcal{K}_2 = (G_1 \times G_2, M_1 \cup M_2, \nabla).$ · $(g_1, g_2) \nabla (j, m) : \iff g_1 I_1 m, \text{ for } j \in \{1, 2\}$
- Direct product:
 - $\mathcal{K}_1 \times \mathcal{K}_2 = (G_1 \times G_2, M_1 \times M_2, \nabla).$
 - $\cdot (g_1,g_2)\nabla(m_1,m_2): \iff g_1 \mathtt{I}_1 \mathtt{m}_1 \text{ or } g_2 \mathtt{I}_2 \mathtt{m}_2.$
- Heterogeneous composition (if $G = G_1 = G_2$):

·
$$\mathcal{K}_1 \bowtie \mathcal{K}_2 = (G, M_1 \times M_2, \nabla).$$

• $g\nabla(m_1, m_2)$: \iff gI_1m_1 and gI_2m_2 .

Conclusions

Ínría

Victor Codocedo, Amedeo Napoli - Pattern Structures and RCA

Conclusions

Final remarks:

- Latent variable models can benefit from the capabilities of FCA by allowing an enriched description of otherwise, abstract characterizations.
- The flexibility of pattern structures allows for objects to be described by mixed representations, i.e. heterogeneous data.
- Relational Concept Analysis can be also applied on complex data by the use of heterogeneous pattern structures.
- The use of heterogeneous pattern structures may allow the implementation of FCA algorithms on further applications of data mining, such as high-order heterogeneous data co-clustering [5].

THE END

Ínría_

Victor Codocedo, Amedeo Napoli – Pattern Structures and RCA

References I

 Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet allocation. Journal of Machine Learning Research 3 (2003), 993–1022.

[2] Deerwester, S., Dumais, S., and Furnas, G.
 Indexing by latent semantic analysis.
 Journal of the (1990).

[3] Ganter, B., and Kuznetsov, S. O.

Pattern Structures and their projections. Conceptual Structures: Broadening the Base (2001).

[4] Ganter, B., and Wille, R.

Formal Concept Analysis: Mathematical Foundations. Springer, Dec. 1999.

References II

[5] Gao, B., Liu, T.-Y., and Ma, W.-Y.

Star-structured high-order heterogeneous data co-clustering based on consistent information theory.

In Data Mining, 2006. ICDM'06. Sixth International Conference on (2006), IEEE, pp. 880–884.

[6] Hofmann, T.

Probabilistic latent semantic analysis.

In *Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence* (1999), Morgan Kaufmann Publishers Inc., pp. 289–296.

[7] Kaytoue, M., Kuznetsov, S. O., and Napoli, A.

Revisiting numerical pattern mining with formal concept analysis.

Proceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume Volume Two (Nov. 2011), 1342–1347.

References III

- [8] Manning, C. D., Raghavan, P., and Schtze, H. Introduction to Information Retrieval. July 2008.
- [9] Rouane-Hacene, M., Huchard, M., Napoli, A., and Valtchev, P.
 Relational concept analysis: mining concept lattices from multi-relational data. Annals of Mathematics and Artificial Intelligence 67, 1 (Mar. 2013), 81–108.
- [10] Srivastava, A., and Sahami, M.

Text Mining: Classification, Clustering, and Applications, 1st ed. Chapman & Hall/CRC, 2009.