# Attribute Exploration with Proper Premises and Incomplete Knowledge Applied to the Free Radical Theory of Ageing

#### Johannes Wollbold, Rüdiger Köhling and Daniel Borchmann

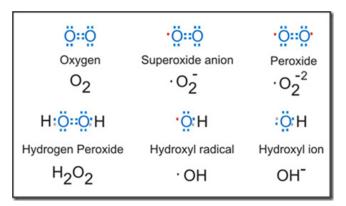
Systems Biology and Bioinformatics, University of Rostock johannes.wollbold@uni-rostock.de

Oscar Langendorff Institute of Physiology, University Medicine, Rostock, Germany

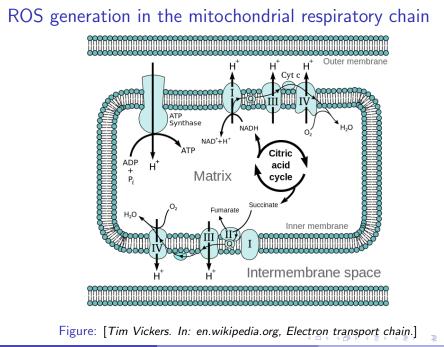
Institute of Theoretical Computer Science, Technische Universitt Dresden, Germany

ICFCA 2014, 10 - 13 June 2014

• • = • • = •


# Outline

- The free radical theory of ageing
- 2 Assembling a knowledge base of ripple down rules
- 3 Validation and completion by attribute exploration
- 4 Attribute exploration with proper premises and incomplete knowledge




# Free radicals

- Free radicals have unpaired electrons.
- One subclass of reactive oxygen species (ROS), highly oxidative small molecules capable of damaging organic molecules.



< ∃ > .



## Mitochondria get damaged with age.

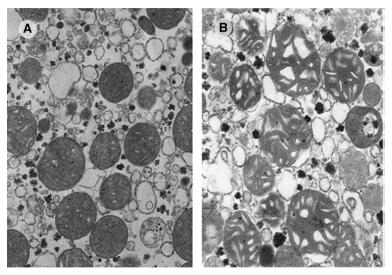
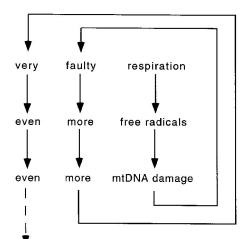




Figure: Liver mitochondria from young and old rats. [Jose Vina. Antioxidant & Redox Signaling, 19 (8), 2013, Figure 2]

Johannes Wollbold (SBI Rostock)

# Vicious cycle of ROS generation and molecular damage

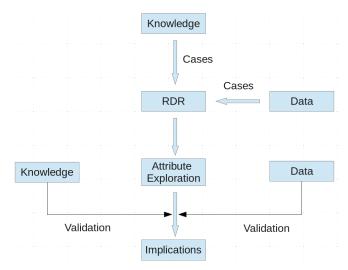


[Aubrey de Grey. The Mitochondrial Free Radical Theory of Aging, 1999, Fig. 6.1]

< ∃ > <

# Outline

#### 1 The free radical theory of ageing


#### 2 Assembling a knowledge base of ripple down rules

- 3 Validation and completion by attribute exploration
- 4 Attribute exploration with proper premises and incomplete knowledge

### 5 Outlook

< 3 ×

# The workflow



A collection of Ripple Down Rules (RDR) and cornerstone cases is converted to a complete knowledge base of implications.

Johannes Wollbold (SBI Rostock)

PP-Exploration of the FRTA

June 2014 8 / 25

Knowledge<sup>1</sup> is collected in a tree of general and exceptional rules (*Ripple Down Rules, RDR*).

Observed cases, defined by attributes  $m \in M \setminus C$ , are classified by classes  $C \subseteq \{ROS.old.+, ROS.old.-, Lifespan.+, Lifespan.-\} \subseteq M$ .

<sup>&</sup>lt;sup>1</sup>Kirkwood, TBL and Kowald, A. The free-radical theory of ageing – older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. *BioEssays* 2012, p. 1f.

Knowledge<sup>1</sup> is collected in a tree of general and exceptional rules (*Ripple Down Rules, RDR*).

Observed cases, defined by attributes  $m \in M \setminus C$ , are classified by classes  $C \subseteq \{ROS.old.+, ROS.old.-, Lifespan.+, Lifespan.-\} \subseteq M$ .

Iterative process of knowledge base construction:

Johannes Wollbold (SBI Rostock)

PP-Exploration of the FRTA

June 2014 9 / 25

<sup>&</sup>lt;sup>1</sup>Kirkwood, TBL and Kowald, A. The free-radical theory of ageing – older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. *BioEssays* 2012, p. 1f.

Knowledge<sup>1</sup> is collected in a tree of general and exceptional rules (*Ripple Down Rules, RDR*).

Observed cases, defined by attributes  $m \in M \setminus C$ , are classified by classes  $C \subseteq \{ROS.old.+, ROS.old.-, Lifespan.+, Lifespan.-\} \subseteq M$ .

Iterative process of knowledge base construction:

1.  $\top \rightarrow \text{ROS.old.+, Lifespan.-}$ 

<sup>&</sup>lt;sup>1</sup>Kirkwood, TBL and Kowald, A. The free-radical theory of ageing – older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. *BioEssays* 2012, p. 1f.

Knowledge<sup>1</sup> is collected in a tree of general and exceptional rules (*Ripple Down Rules, RDR*).

Observed cases, defined by attributes  $m \in M \setminus C$ , are classified by classes  $C \subseteq \{ROS.old.+, ROS.old.-, Lifespan.+, Lifespan.-\} \subseteq M$ .

Iterative process of knowledge base construction:

- 1.  $\top \rightarrow \text{ROS.old.+, Lifespan.-}$ 
  - 1.1. AntiOx1.+  $\rightarrow$  ROS.old.-, Lifespan.+

<sup>&</sup>lt;sup>1</sup>Kirkwood, TBL and Kowald, A. The free-radical theory of ageing – older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. *BioEssays* 2012, p. 1f.

Knowledge<sup>1</sup> is collected in a tree of general and exceptional rules (*Ripple Down Rules, RDR*).

Observed cases, defined by attributes  $m \in M \setminus C$ , are classified by classes  $C \subseteq \{ROS.old.+, ROS.old.-, Lifespan.+, Lifespan.-\} \subseteq M$ .

Iterative process of knowledge base construction:

- 1.  $\top \rightarrow \text{ROS.old.+, Lifespan.-}$ 
  - 1.1. AntiOx1.+  $\rightarrow$  ROS.old.-, Lifespan.+

1.1.1. AntiOx1.+, AntiOx2.-  $\rightarrow$  ROS.old.+

<sup>1</sup>Kirkwood, TBL and Kowald, A. The free-radical theory of ageing – older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. *BioEssays* 2012, p. 1f.

Knowledge<sup>1</sup> is collected in a tree of general and exceptional rules (*Ripple Down Rules, RDR*).

Observed cases, defined by attributes  $m \in M \setminus C$ , are classified by classes  $C \subseteq \{ROS.old.+, ROS.old.-, Lifespan.+, Lifespan.-\} \subseteq M$ .

Iterative process of knowledge base construction:

1. 
$$\top \rightarrow \text{ROS.old.+, Lifespan.-}$$

1.1. AntiOx1.+  $\rightarrow$  ROS.old.-, Lifespan.+

1.1.1. AntiOx1.+, AntiOx2.-  $\rightarrow$  ROS.old.+

- 1.3. AntiOx2.-, Mouse  $\rightarrow$  ROS.old.+
- 1.3. AntiOx2.-, CElegans  $\rightarrow$  ROS.old.+

<sup>&</sup>lt;sup>1</sup>Kirkwood, TBL and Kowald, A. The free-radical theory of ageing – older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. *BioEssays* 2012, p. 1f.

Knowledge<sup>1</sup> is collected in a tree of general and exceptional rules (*Ripple Down Rules, RDR*).

Observed cases, defined by attributes  $m \in M \setminus C$ , are classified by classes  $C \subseteq \{ROS.old.+, ROS.old.-, Lifespan.+, Lifespan.-\} \subseteq M$ .

Iterative process of knowledge base construction:

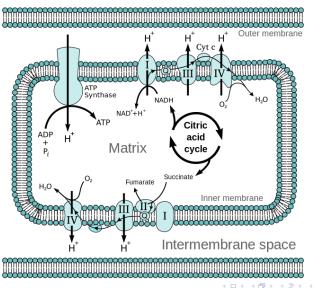
1. 
$$\top \rightarrow \text{ROS.old.+, Lifespan.-}$$

1.1. AntiOx1.+  $\rightarrow$  ROS.old.-, Lifespan.+

1.1.1. AntiOx1.+, AntiOx2.-  $\rightarrow$  ROS.old.+

- 1.3. AntiOx2.–, Mouse  $\rightarrow$  ROS.old.+
- 1.3. AntiOx2.–, CElegans  $\rightarrow$  ROS.old.+

Background knowledge for later exploration:


#### $AntiOx2.- \rightarrow ROS.old.+$

Johannes Wollbold (SBI Rostock)

June 2014 9 / 25

<sup>&</sup>lt;sup>1</sup>Kirkwood, TBL and Kowald, A. The free-radical theory of ageing – older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. *BioEssays* 2012, p. 1f.

# Mutations of respiratory chain molecules are studied in the ROSAge project



# A rule derived from ROSAge data

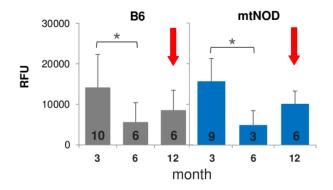



Figure: Basal ROS measurements by Dept. of Hematology Rostock.

Mouse, Mut-ETC,  $\rightarrow \emptyset$ 

# A conflicting rule derived from ROSAge data

Figure: Basal ROS measurements by Institute of Physiology Rostock for the mouse strain NOD (mutation in complex IV of the respiratory chain). A significant increase of free radicals in 24 month old mice is measured, compared to 3 month.

#### Mouse, Mut-ETC $\rightarrow$ ROS.old.+

 $\Rightarrow$  Mut-ETC, Mouse  $\rightarrow$  Ø not accepted as background knowledge. Both cases are stored in the formal context of cornerstone cases.

## The tree of rules and exceptions

T → ROS.old.+, Lifespan. 1.1. AntiOx1.+ → ROS.old.-, Lifespan.+
 1.1.1. AntiOx1.+, AntiOx2.- → ROS.old.+
 1.2. Mouse, AntiOx2.- → ROS.old.+
 1.3. CElegans, AntiOx2.- → ROS.old.+

1.4. Mouse, Mut-ETC  $\rightarrow \bot$ 

## The tree of rules and exceptions

1.  $\top \rightarrow \text{ROS.old.+}$ , Lifespan.-1.1. AntiOx1.+  $\rightarrow \text{ROS.old.-}$ , Lifespan.+ 1.1.1. AntiOx1.+, AntiOx2.-  $\rightarrow \text{ROS.old.+}$ 1.2. Mouse, AntiOx2.-  $\rightarrow \text{ROS.old.+}$ 1.3. CElegans, AntiOx2.-  $\rightarrow \text{ROS.old.+}$ 1.4. Mouse, Mut-ETC  $\rightarrow \perp$ 2. OxStress  $\rightarrow \dots$ 

2.1. ...

## The tree of rules and exceptions

1.  $\top \rightarrow \text{ROS.old.+}$ , Lifespan.-1.1. AntiOx1.+  $\rightarrow \text{ROS.old.-}$ , Lifespan.+ 1.1.1. AntiOx1.+, AntiOx2.-  $\rightarrow \text{ROS.old.+}$ 1.2. Mouse, AntiOx2.-  $\rightarrow \text{ROS.old.+}$ 1.3. CElegans, AntiOx2.-  $\rightarrow \text{ROS.old.+}$ 1.4. Mouse, Mut-ETC  $\rightarrow \perp$ 2. OxStress  $\rightarrow \dots$ 

2.1. ...

3. ATP.old.-  $\rightarrow$  ...

3.1. ...

## The incomplete formal context of cornerstone cases

|         | AntiOx1.+ | AntiOx1 | AntiOx2.+ | AntiOx2  | CElegans | Mouse    | Mut-ETC | ROS.old.+ | ROS.old | Lifespan.+ | Lifespan |
|---------|-----------|---------|-----------|----------|----------|----------|---------|-----------|---------|------------|----------|
| 1.      | ?         | ?       | ?         | ?        | ×        | $\times$ | ?       | ×         |         |            | ×        |
| 1.1.    | ×         |         | ?         | ?        | ×        | ×        |         |           | ×       | ×          |          |
| 1.1.1.  | ×         |         |           | $\times$ | ×        | $\times$ |         | ×         |         | ?          | ?        |
| 1.21.3. | ?         | ?       |           | ×        | ×        | ×        |         | ×         |         | ?          | ?        |
| 1.4a    | ?         | ?       | ?         | ?        | ?        | ×        | ×       |           |         | ?          | ?        |
| 1.4b    | ?         | ?       | ?         | ?        | ?        | ×        | ×       | ×         |         | ?          | ?        |

Table: Examples (cornerstone cases) related to the RDR knowledge base: Certain context  $\mathbb{K}_+$  and possible context  $\mathbb{K}_?$ .

# Outline

The free radical theory of ageing

2 Assembling a knowledge base of ripple down rules

3 Validation and completion by attribute exploration

4 Attribute exploration with proper premises and incomplete knowledge

5 Outlook

Confirmed rules (some logical juggling)

#### $\mathsf{AntiOx1.-} \rightarrow \mathsf{ROS.old.+}$

AntiOx1.–, AntiOx2.+  $\rightarrow \perp$  (background) implies that AntiOx2.+ does not hold.

As RDR, we had already the stronger rule AntiOx1.+, AntiOx2.-  $\rightarrow$  ROS.old.+.

Confirmed rules (some logical juggling)

#### $AntiOx1.- \rightarrow ROS.old.+$

AntiOx1.–, AntiOx2.+  $\rightarrow \perp$  (background) implies that AntiOx2.+ does not hold.

As RDR, we had already the stronger rule AntiOx1.+, AntiOx2.-  $\rightarrow$  ROS.old.+.

#### $AntiOx2.+ \rightarrow ROS.old.-$

AntiOx1.-, AntiOx2.+  $\rightarrow \perp$  (background) implies that AntiOx1.- does not hold. Hence, AntiOx2.+, AntiOx1.-  $\rightarrow$  ROS.old.+ (parallel to RDR 1.1.1) is the only exception.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Confirmed rules

#### AntiOx1.+, AntiOx2.+, CElegans $\rightarrow$ Lifespan.+

The strong conclusion can be assumed for the short living worm C.  $elegans.^2$ 

<sup>3</sup>Sohal R., Orr, W. *Free Radical Biology and Medicine* 52(3), 539-555 (2012) <sup>3</sup>Kirkwood TBL, Kowald A. *BioEssays* 2012, p. 6

Johannes Wollbold (SBI Rostock)

# Confirmed rules

#### AntiOx1.+, AntiOx2.+, CElegans $\rightarrow$ Lifespan.+

The strong conclusion can be assumed for the short living worm C.  $elegans.^2$ 

#### AntiOx1.-, Mouse, Mut-ETC $\rightarrow$ Lifespan.-

Mutations (deletions) of the mitochondrial DNA can cause lifespan reducing damage for long-lived animals like mice.<sup>3</sup>

<sup>3</sup>Sohal R., Orr, W. *Free Radical Biology and Medicine* 52(3), 539-555 (2012) <sup>3</sup>Kirkwood TBL, Kowald A. *BioEssays* 2012, p. 6

Johannes Wollbold (SBI Rostock)

## Counterexamples

## Mouse, CElegans, Mut-ETC, AntiOx1.+ $\rightarrow$ ROS.old.-Counterexample:

AntiOx2.+  $\rightarrow$  ROS.old.- was accepted, but here AntiOx2.- is possible.

<sup>3</sup>Fitzenberger E, Boll M, Wenzel U. Impairment of the proteasome is crucial for glucose-induced lifespan reduction in the mev-1 mutant of Caenorhabditis elegans. *Biochim Biophys Acta*, 2013 Apr, 1832(4), p. 565-73.

Johannes Wollbold (SBI Rostock)

# Counterexamples

Mouse, CElegans, Mut-ETC, AntiOx1.+  $\rightarrow$  ROS.old.-Counterexample:

AntiOx2.+  $\rightarrow$  ROS.old.- was accepted, but here AntiOx2.- is possible.

AntiOx2.+  $\rightarrow$  Lifespan.+

ROS are reduced, but this is not sufficient to extend lifespan. Counterexample:

(AntiOx1.+,) AntiOx2.+, (Mouse,) ROS.old.-, NOT Lifespan.+

<sup>3</sup>Fitzenberger E, Boll M, Wenzel U. Impairment of the proteasome is crucial for glucose-induced lifespan reduction in the mev-1 mutant of Caenorhabditis elegans. *Biochim Biophys Acta*, 2013 Apr, 1832(4), p. 565-73.

Johannes Wollbold (SBI Rostock)

# Outline

- The free radical theory of ageing
- 2 Assembling a knowledge base of ripple down rules
- 3 Validation and completion by attribute exploration
- 4 Attribute exploration with proper premises and incomplete knowledge
- 5 Outlook

< 3 >

# Implications with proper premises

#### Definition

For a given formal context (G, M, I) and a set of attributes  $P \subseteq M$ , define  $P^{\bullet}$  to be the set of those attributes in  $M \setminus P$  that follow from P but not from a strict subset of P, i.e.

$$P^{\bullet} = P'' \setminus \left( P \cup \bigcup_{S \subsetneq P} S'' \right)$$

*P* is called a *proper premise* if  $P^{\bullet}$  is not empty. It is called a *proper premise for m* if  $m \in P^{\bullet}$ .

# Exploration with incomplete counterexamples

PP-Implications are suited for disjoint basic sets for the premises and conclusions:

- Decision of an implication P → C by closure under all implications of the base: C ⊆ L(P)?
- PP base is iteration free: Closure is reached in one step.
- For disjoint implications, no iteration is possible.
- ⇒ Standard algorithm for the base construction of the whole context can be used, with iteration through the interesting  $m \in C \subsetneq M$ .

Implications have to be valid for any *realizer* of  $\mathbb{K}_+$  and  $\mathbb{K}_?$ .

Proposition (Proposition 30 from Ganter/Obiedkov 2013<sup>4</sup>)

A set  $P \subseteq M$  possibly entails  $m \in M$  if and only if  $m \in P^{+?}$ .

<sup>4</sup>Ganter, B., Obiedkov, S.: Conceptual Exploration. Preprint, Dresden (2013)

Johannes Wollbold (SBI Rostock)

# A new algorithm

```
define algorithm-2 (\mathbb{K}_+ = (G, M, I_+), \mathbb{K}_2 = (G, M, I_2), C \subseteq M.
\mathcal{B} \subseteq \mathrm{Th}_C(\mathbb{K}_+))
   \mathcal{L} := \mathcal{B}
   forall m \in C do
        \mathcal{P} := \{ P \subseteq M \setminus C \mid P \text{ possible proper premise for } m \text{ in } (\mathbb{K}_+, \mathbb{K}_?) \}
        while there exists P \in \mathcal{P} with \mathcal{L} \not\models (P \longrightarrow \{m\}) do
            if expert confirms P \longrightarrow \{m\} then
                \mathcal{L} := \mathcal{L} \cup \{P \longrightarrow \{m\}\}
                forall q \in G do
                    q^+ := \mathcal{L}(q^+)
                    forall m \in g^? \setminus g^+ where \mathcal{L}(g^+ \cup \{m\}) \not\subseteq g^? do
                        remove m from q^?
                    end
                end
            else
                ask expert for valid counterexample and augment \mathbb{K}_+ and \mathbb{K}_2
                \mathcal{P} := \{ P \subseteq M \setminus C \mid P \text{ possible proper premise for } m \text{ in } (\mathbb{K}_+, \mathbb{K}_2) \}
            end
        end
   end
   return \mathcal{L} \setminus \mathcal{B}
end
```

# Outline

- The free radical theory of ageing
- 2 Assembling a knowledge base of ripple down rules
- 3 Validation and completion by attribute exploration
- 4 Attribute exploration with proper premises and incomplete knowledge



< 3 >

• The new method gives a structured overview on facts and open questions of the free radical theory of ageing.

- The new method gives a structured overview on facts and open questions of the free radical theory of ageing.
- "True" exploration of RDR:

$$\bigwedge_{i\in I} \alpha_i \wedge \bigwedge_{j\in J} \neg \alpha_j \to \beta$$

Easier than *rule exploration* of general clauses? Two contexts with positive and negated attributes?

- The new method gives a structured overview on facts and open questions of the free radical theory of ageing.
- "True" exploration of RDR:

$$\bigwedge_{i\in I} \alpha_i \wedge \bigwedge_{j\in J} \neg \alpha_j \to \beta$$

Easier than *rule exploration* of general clauses? Two contexts with positive and negated attributes?

• Integration of insecure data - Fuzzy FCA?

- The new method gives a structured overview on facts and open questions of the free radical theory of ageing.
- "True" exploration of RDR:

$$\bigwedge_{i\in I} \alpha_i \wedge \bigwedge_{j\in J} \neg \alpha_j \to \beta$$

Easier than *rule exploration* of general clauses? Two contexts with positive and negated attributes?

- Integration of insecure data Fuzzy FCA?
- Larger, biologically more relevant application.

Christin Kretzschmar and Catrin Roolf Dept. of Hematology, Rostock

Gesine Reichart and Johannes Mayer Dept. of Phyisology, Rostock

Britta Burkhardt Siegfried Weller Institut, Eberhard-Karls-Universität Tübingen