Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work

Automatized Construction of Implicative Theory of Algebraic Identities of Size up to 5

Artem Revenko

TU Dresden HSE Moscow

ICFCA 2014 June 10

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work

Attribute Exploration

Introduction Example

Context

Identities Bunnies

Exploration of Equational Classes

Motivation Principal Schema Infinite Bunnies Results

Conclusion and Future Work

Attribute Exploration

Example

Context

Identities Bunnies

Exploration of Equational Classes

Motivation Principal Schema Infinite Bunnies Results

Conclusion and Future Work

●OO	Context Exploration of Equational Classes Conclusion and Future v 0000 0000000 0						e vvork	
Formal Conte	exts & Impl	licatio	ns					
					all sides equal	some sides equal	has right angle	
Definition (Forma	l Context)			\diamond	Х	Х		
M - a set of attrib	outes.				х	х	х	
G - a set of objec	ts.					х	х	
$\mathbb{K} = (G, M, I)$ - a	(formal) conte	ext.				×		
			{all	sides eq	$ ual\} ightarrow$	some s	sides eq	ual
(Unit) Implication $Y \subseteq M, z \in M$	$Y \rightarrow z$,							
$\forall g \in G: ext{ if } gIY ext{ t}$	<mark>hen</mark> glz.							

.00 Formal Contexts & Implications all sides equal some sides equal has right angle Definition (Formal Context) х Х \Diamond M - a set of attributes. Х Х Х \square G - a set of objects. х Х I - a relation between G and M. Х $\mathbb{K} = (G, M, I)$ - a (formal) context. $\overline{}$ $\{all sides equal\} \rightarrow some sides equal$ (Unit) Implication $Y \rightarrow z$, some sides equal $Y \subseteq M, z \in M$ $\forall g \in G$: if glY then glz. all sides equal has hight angle 4/23

Exploration of Equational Classes

Conclusion and Future Work

Attribute Exploration

Context

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
○●○	0000		0
Implication B	ase		

Implication base of context

Set of implications:

- from which any valid implication can be deduced,
- none of the proper subsets has this property.

Example

- 1. all sides equal \rightarrow some sides equal;
- 2. has right angle \rightarrow some sides equal.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
○●○	0000		0
Implication E	Base		

Implication base of context

Set of implications:

- from which any valid implication can be deduced,
- none of the proper subsets has this property.

Example

- 1. all sides equal \rightarrow some sides equal;
- 2. has right angle \rightarrow some sides equal.

Counter-example Image: all sides equal some sides equal has right angle Image: constraint of the state state

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
○○●	0000		0
Attribute Explo	pration of	Quadrangles	

- 1. all sides equal \rightarrow some sides equal;
- 2. all angles equal \rightarrow some sides equal, has right angle;
- 3. has right angle \rightarrow some sides equal, all angles equal.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
○○●	0000		0
Attribute Explo	pration of	Quadrangles	

- 1. all sides equal \rightarrow some sides equal;
- 2. all angles equal \rightarrow some sides equal, has right angle;
- 3. has right angle \rightarrow some sides equal, all angles equal.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
○○●	0000		O
Attribute Explo	pration of	Quadrangles	

- 1. all sides equal \rightarrow some sides equal;
- 2. all angles equal \rightarrow some sides equal, has right angle;
- 3. has right angle, some sides equal \rightarrow all angles equal.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
○○●	0000		0
Attribute Explo	oration of	Quadrangles	

- 1. all sides equal \rightarrow some sides equal;
- 2. all angles equal \rightarrow some sides equal, has right angle;
- 3. has right angle, some sides equal \rightarrow all angles equal.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
○○●	0000		0
Attribute Explo	oration of	Quadrangles	

- 1. all sides equal \rightarrow some sides equal;
- 2. all angles equal \rightarrow some sides equal, has right angle;
- 3. has right angle, all sides equal \rightarrow all angles equal.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work

Attribute Exploration Introduction

Example

Context

Identities Bunnies

Exploration of Equational Classes

Motivation Principal Schema Infinite Bunnies Results

Conclusion and Future Work

Attribute Explora	tion C	ontext 000	Exploration of Equational Classes	Conclusion and Future Work O
Identitie	es			
Opera	ations Φ:		Var	iables X:
bi u nu	nary: $f^{(2)}$ on ary: $f^{(1)}$ of a lary: $f^{(0)}$ of a lary: $f^{(0)}$ of a lary: $f^{(0)}$ of a lary of a lary of a large structure structu	or * or — or a	х,	y, z
Terms	$T_{\Phi}(X)$			

Terms construction:

•
$$X \subseteq T_{\Phi}(X);$$

▶ $p_1, \ldots p_n \in T_{\Phi}(X)$ and $f^{(n)} \Rightarrow f^{(n)}(p_1, \ldots p_n) \in T_{\Phi}(X)$.

Identity

Identity is a pair $(p,q), p,q \in T_{\Phi}(X)$, written $p \equiv q$.

Size of Identi	+		
Attribute Exploration	Context ○●○○	Exploration of Equational Classes	Conclusion and Future Work 0

Size of identity $p_1 \equiv p_2$

 $\begin{array}{l} v(p_i) \\ o(p_i) \end{array} \text{ number of occurrences of } \begin{array}{l} \text{variables} \\ \text{operations} \end{array} \text{ in } p_i. \\ \\ \text{Size: } l(p_1 \equiv p_2) = \sum_{i=1}^2 v(p_i) + o(p_i). \end{array}$

Example
$$(x * y \equiv y * x)$$

 $v(x * y) = 2,$ $v(y * x) = 2,$
 $o(x * y) = 1,$ $o(y * x) = 1,$
 $l(x * y \equiv y * x) = 2 + 1 + 2 + 1 = 6.$

It is necessary to limit the size.

Attribute Exploration	Context ○○●○	Exploration of Equational Classes	Conclusion and Future Work O
BUNny			

Attribute Exploration	Context ○○●○	Exploration of Equational Classes	Conclusion and Future Work O
BUNny			

В	U	Ν	n	у	Example (A bunny of size 2)
i	n	u			$\mathfrak{B}_{r} = (\{0, 1\}, (* - 0))$
n	а	Ι			$z_5 = ((0, 1), (*, 0))$
а	r	Ι			* 0 1
r	У	а			
у		r			1 1 0 0 0
		у			

Definition (BUNny)

A set and a family of a binary, a unary, and a nullary operations are called a bunny.

			Ŭ
Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work 0

$$p^{(n)}(\bar{x}) \equiv q^{(n)}(\bar{x})$$
 is satisfied in $(A, (f^{(2)}, f^{(1)}, f^{(0)}))$ iff $p^{(n)}(\bar{a}) = q^{(n)}(\bar{a})$ for all $\bar{a} \in A^n$.

		000000	0
Equivalent I	aentities		

$$p^{(n)}(\bar{x}) \equiv q^{(n)}(\bar{x})$$
 is satisfied in $(A, (f^{(2)}, f^{(1)}, f^{(0)}))$ iff $p^{(n)}(\bar{a}) = q^{(n)}(\bar{a})$ for all $\bar{a} \in A^n$.

Equivalent identities $p_1 \equiv p_2 \iff q_1 \equiv q_2$

Identities are equivalent iff they are satisfied in the same bunnies.

Examples

$$\blacktriangleright a \equiv a \iff x \equiv x,$$

		000000	0
Equivalent I	aentities		

$$p^{(n)}(\bar{x}) \equiv q^{(n)}(\bar{x})$$
 is satisfied in $(A, (f^{(2)}, f^{(1)}, f^{(0)}))$ iff $p^{(n)}(\bar{a}) = q^{(n)}(\bar{a})$ for all $\bar{a} \in A^n$.

Equivalent identities $p_1 \equiv p_2 \iff q_1 \equiv q_2$

Identities are equivalent iff they are satisfied in the same bunnies.

Examples

$$\bullet \ a \equiv a \iff x \equiv x,$$

$$\blacktriangleright x \equiv y \iff x \equiv a,$$

Equivalent Id	entities		
Attribute Exploration	Context ○○○●	Exploration of Equational Classes	Conclusion and Future Work 0

$$p^{(n)}(\bar{x}) \equiv q^{(n)}(\bar{x})$$
 is satisfied in $(A, (f^{(2)}, f^{(1)}, f^{(0)}))$ iff $p^{(n)}(\bar{a}) = q^{(n)}(\bar{a})$ for all $\bar{a} \in A^n$.

Equivalent identities $p_1 \equiv p_2 \iff q_1 \equiv q_2$

Identities are equivalent iff they are satisfied in the same bunnies.

Examples

 $\blacktriangleright a \equiv a \iff x \equiv x,$

$$\bullet \ x \equiv y \iff x \equiv a,$$

•
$$x \equiv a \iff x \equiv -y$$
.

It makes sense to avoid equivalent identities.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Wo

Attribute Exploration

Introduction Example

Context

Identities Bunnies

Exploration of Equational Classes

Motivation Principal Schema Infinite Bunnies Results

Conclusion and Future Work

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work o
Motivation			

A class of algebras satisfying given identities.

Example (Semigroup)

The equational class of algebras with only a binary operation satisfying

$$x*(y*z)\equiv (x*y)*z;$$

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Motivation			

A class of algebras satisfying given identities.

Example (Group)

The equational class of algebras with a binary, a unary, and a nullary operations satisfying

$$x * (y * z) \equiv (x * y) * z;$$

$$x * 1 \equiv 1 * x \equiv x;$$

$$x * (-x) \equiv (-x) * x \equiv 1;$$

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Motivation			

A class of algebras satisfying given identities.

Example (Abelian Group)

The equational class of algebras with a binary, a unary, and a nullary operations satisfying

$$x * (y * z) \equiv (x * y) * z;$$

$$x * 1 \equiv 1 * x \equiv x;$$

$$x * (-x) \equiv (-x) * x \equiv 1;$$

$$x * y \equiv y * x.$$

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Motivation			

A class of algebras satisfying given identities.

Definition (Variety)

A class of algebras closed under homomorphisms, subalgebras, products.

Theorem (HSP, Birkhoff 1935)

Variety \sim equational class.

000	0000	000000	0		
Problem Statement					

Problem statement

Automatic construction of the implicative theory of algebraic identities of size up to 5 (70 pairwise non-equivalent).

Related research

Concerning:

- Decidability of equational theories [Per67], [Tay79];
- Finding (finite) bases [BS81].

Closely related work

PhD thesis, most of research by hand [Kes13].

- On the first step initial (small) context is generated;
- On every step unnecessary objects are eliminated.

Canonical base.

- Try to prove;
- Try to find a counter-example.

Proof

Prover9 (from http://www.cs.unm.edu/~mccune/mace4/).

- Mace4 (from http://www.cs.unm.edu/~mccune/mace4/);
- find_infinite_algebra.

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Only finite bun	inies?		

Lemma ([Kes13])

For finite bunnies is satisfied: $\{x \equiv a * (-x)\} \rightarrow x \equiv -(a * x)$.

000	0000	O
Only finite hun	nioc?	

Only finite bunnies?

Lemma ([Kes13])

For finite bunnies is satisfied: $\{x \equiv a * (-x)\} \rightarrow x \equiv -(a * x)$.

Counter-example: algebra $\mathcal{A}_{\infty} = (\mathbb{N}_0, (*_{\infty}, -_{\infty}, a_{\infty}))$

$$m *_{\infty} n = \begin{cases} n, & \text{if } m = 0 \text{ and } n \leq 2; \\ n -_{\mathbb{N}_0} 1, & \text{if } m = 0 \text{ and } n \geq 3; \\ 0, & \text{if } m \geq 1. \end{cases}$$

$$-_{\infty}n = \begin{cases} n, & \text{if } n \leq 2; \\ n+1, & \text{if } n \geq 3. \end{cases}$$

 $a_{\infty}=0.$

Try x = 3.

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
	0000	○○○●○○○	O
Only finite bu	nnies?		

Lemma ([Kes13]) For finite bunnies is satisfied: $\{x \equiv a * (-x)\} \rightarrow x \equiv -(a * x).$

Counter-example: algebra $\mathcal{A}_{\infty} = (\mathbb{N}_0, (*_{\infty}, -_{\infty}, a_{\infty}))$

$$m *_{\infty} n = \begin{cases} n, & \text{if } m = 0 \text{ and } n \leq 2; \\ n -_{\mathbb{N}_0} 1, & \text{if } m = 0 \text{ and } n \geq 3; \\ 0, & \text{if } m \geq 1. \end{cases}$$

$$-\infty n = \begin{cases} n, & \text{if } n \leq 2; \\ n+1, & \text{if } n \geq 3. \end{cases}$$

$$a_{\infty}=0.$$

 $3 \equiv a * (-3) \rightarrow 3 \equiv -(a * 3).$

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Only finite bun	nies?		

Lemma ([Kes13])

For finite bunnies is satisfied: $\{x \equiv a * (-x)\} \rightarrow x \equiv -(a * x)$.

Counter-example: algebra $\mathcal{A}_{\infty} = (\mathbb{N}_0, (*_{\infty}, -_{\infty}, a_{\infty}))$

$$m *_{\infty} n = \begin{cases} n, & \text{if } m = 0 \text{ and } n \leq 2; \\ n - \mathbb{N}_0 \ 1, & \text{if } m = 0 \text{ and } n \geq 3; \\ 0, & \text{if } m \geq 1. \end{cases}$$
$$-_{\infty} n = \begin{cases} n, & \text{if } n \leq 2; \\ n+1, & \text{if } n \geq 3. \end{cases}$$
$$a_{\infty} = 0.$$
$$3 \equiv 0 * (-3) \rightarrow 3 \equiv -(0 * 3).$$

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Only finite bun	nies?		

Lemma ([Kes13])

For finite bunnies is satisfied: $\{x \equiv a * (-x)\} \rightarrow x \equiv -(a * x)$.

Counter-example: algebra $\mathcal{A}_{\infty} = (\mathbb{N}_0, (*_{\infty}, -_{\infty}, a_{\infty}))$

$$m *_{\infty} n = \begin{cases} n, & \text{if } m = 0 \text{ and } n \le 2; \\ n -_{\mathbb{N}_0} 1, & \text{if } m = 0 \text{ and } n \ge 3; \\ 0, & \text{if } m \ge 1. \end{cases}$$
$$-_{\infty} n = \begin{cases} n, & \text{if } n \le 2; \\ n+1, & \text{if } n \ge 3. \end{cases}$$
$$a_{\infty} = 0.$$

 $3 \equiv \mathbf{0} * \mathbf{4} \quad \rightarrow \quad 3 \equiv -2.$

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
000	0000		O
Only finite hun	nies?		

Only finite bunnies?

Lemma ([Kes13]) For finite bunnies is satisfied: $\{x \equiv a * (-x)\} \rightarrow x \equiv -(a * x).$

Counter-example: algebra $\mathcal{A}_{\infty} = (\mathbb{N}_0, (*_{\infty}, -_{\infty}, a_{\infty}))$

$$m *_{\infty} n = \begin{cases} n, & \text{if } m = 0 \text{ and } n \le 2; \\ n -_{\mathbb{N}_0} 1, & \text{if } m = 0 \text{ and } n \ge 3; \\ 0, & \text{if } m \ge 1. \end{cases}$$

$$_{\infty}n = \begin{cases} n, & \text{if } n \leq 2; \\ n+1, & \text{if } n \geq 3. \end{cases}$$

$$a_{\infty}=0.$$

 $3 \equiv 3 \rightarrow 3 \not\equiv 2.$

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Template			

Simplified infinite bunny template

$$\mathfrak{B}_{\mathit{inf}} = (\mathbb{N}, (*, -, 0))$$

*	0	1	
0	$\mathbb{N}_{\leq 3}$	$\mathbb{N}_{\leq 3}$	case ₃
1	$\mathbb{N}_{\leq 3}$	$\mathbb{N}_{\leq 3}$	case ₄
	case ₁	case ₂	case ₅

$$\begin{array}{c|c|c|c|c|c|}\hline & 0 & 1 & \dots \\ \hline & \mathbb{N}_{\leq 3} & \mathbb{N}_{\leq 3} & \textit{case} \end{array}$$

 $case_i(x, y) = c_{i1} \times x + c_{i2} \times y + c_{i3}, \\ c_{ij} \in [-3, 3]$

$$case(x) = d_1 \times x + d_2,$$

 $d_i \in [-3,3]$

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work
		0000000	

Algorithm 1: find_infinite_algebra

```
Input: P_{ids} \rightarrow C_{id}, where P_{ids} \subset M_{id}, C_{id} \in M_{id}.
   Output: Algebra \mathcal{A} = (\mathcal{N}_0, (*, -, 0)) satisfying all P_{ids} and not satisfying C_{id}.
 1 while True do
        for id in P_{ids} do
 2
            sat, term = check_identity(A, id)
 3
            if sat = False then
 4
                 backtrack(\mathcal{A})
 5
                 break
 6
            if sat = None then
 7
                 update(A, term)
 8
                 break
 9
        else
10
11
            sat, term = check_identity(\mathcal{A}, C_{id})
            if sat = True then
12
                 backtrack(\mathcal{A})
13
14
                 continue
            if sat = None then
15
16
                 update(A, term)
                continue
17
            if sat = False then
18
                 return \mathcal{A}
19
```

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work O
Results			

Total number of bunnies found during exploration	27266
Number of finite bunnies	626
Number of infinite bunnies	1529
Number of (unit) implications	4398

Time taken

 \simeq 78 hours

Attribute Exploration	Context	Exploration of Equational Classes	Conclusion and Future Work

Attribute Exploration

Introduction Example

Context

Identities Bunnies

Exploration of Equational Classes

Motivation Principal Schema Infinite Bunnies Results

Conclusion and Future Work

Attribute Exploration	Context 0000	Exploration of Equational Classes	Conclusion and Future Work •
Conclusion			

Conclusion

- Attribute exploration yields automatic procedure for accomplishing implication theory of equational classes;
- Introduced template suffices for considered identities.

Future work

- Can automatic Attribute Exploration be used in other domains?
- How is it possible to extend the template for bigger identities?

https://github.com/artreven

S. Burris and H.P. Sankappanavar.

A course in universal algebra, volume 78. Springer-Verlag New York, 1981.

P. Kestler.

Strukturelle Untersuchungen eines Varietätenverbandes von Gruppoiden mit unärer Operation und ausgezeichnetem Element.

PhD thesis, TU Bergakademie, Freiberg, 2013.

P. Perkins.

Unsolvable problems for equational theories.

Notre Dame Journal of Formal Logic, 8(3):175–185, 1967.

W. Taylor.

Equational logic.

University of Houston, Department of Mathematics, 1979.