SYLLABUS

i internation regulating the programme				
1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Departament of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Applied Computational Intelligence			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Computational Intelligence applications in Software Engineering							
2.2 Course coordinator Prof. PhD Czibula Istvan							
2.3 Seminar coordinator				Prof. PhD Czibula Istvan			
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	sem+
					1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					26
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					12
Evaluations					10
Other activities:					-
3.7 Total individual study hours		119			
3.8 Total hours per semester		175			

F	- • •
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language

problems from nature and
uter science.
echniques of ng languages and software
у
on, both oral and written,
tinuous learning

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To present the field of Search Based Software Engineering as a new research and application domain of software engineering.
7.2 Specific objective of the discipline	 To introduce the student a new field of Software Engineering- Search Based Software Engineering. To induce the necessity and importance of using computational intelligence techniques for solving software engineering problems. To present some important activities within software engineering and how are they solved using computational intelligence techniques.

8.1 Course	Teaching methods	Remarks
1. Introduction	Interactive exposure	
Search Based Software Engineering	Explanation	
Main concepts and approached problems	Conversation	
	Didactical	
	demonstration	
2. Machine learning in Software Engineering	• Interactive exposure	
 Machine learning techniques 	Explanation	
 Applications 	Conversation	
	Didactical	
	demonstration	
3. CI techniques for Program Comprehension	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	

	demonstration
4. CI techniques for Refactoring	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
5. CI techniques for Defect Detection and	Interactive exposure
prediction	Explanation
	Conversation
	Didactical
	demonstration
6. CI techniques for Software Testing	Interactive exposure
of of teeningues for portware resting	Explanation
	Conversation
	Didactical
	demonstration
7. CI techniques for Software Vizualization	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
8. CI techniques for Effort prediction and Cost	Interactive exposure
estimation	Explanation
	Conversation
	Didactical
	demonstration
9. CI techniques for Software Reuse	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
10. CI techniques for Design Patterns identification	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
11. CISE research reports presentation	Interactive exposure
	Conversation
12. CISE research reports presentation	Interactive exposure
	Conversation

Bibliography

- 1. Czibula, I., G., Use of search techniques to software development, Editura Risoprint, ISBN 978-973-53-0119-4, 2009 (248 pagini)
- 2. Mark Harman and Bryan F. Jones. Search-based software engineering. Information & Software Technology, 43(14):833-839, 2001.
- 3. Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of refactorings for improving the class structure of object-oriented systems. In GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 1909{1916, New York, NY, USA, 2006. ACM Press.
- Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In CSMR '01: Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, pages 30-38, Washington, DC, USA, 2001. IEEE Computer Society.

8.2 Seminar / laboratory	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every second
		week
1. Administration of seminars. Survey of the sources	• Interactive exposure	
of information available on Internet and Intranet	Explanation	
	Conversation	
2. Survey of the sources of information available on	• Documentation	
Internet and Intranet; chosing the paper topic and	Explanation	
scheduling the presentation.	Conversation	
A software project on a SBSE topic (Project 1) will be		
developed using an open source ML development		
environment. The second project (Project 2) will be		
realized from scratch and documented. The software		
will have to demonstrate the use of CI techniques for		
some specific SE task.		
3. Problem definition and specification for Project 2	Lab assignment	
	Explanation	
	Conversation	
4. Comments about the solution (problem analysis)	Lab assignment	
and search based modeling of the problem (Project 2).	Explanation	
Demonstration of Project 1	Conversation	
5. Design documentation for Project 2	Lab assignment	
	Explanation	
	Conversation	
6. Design documentation for Project 2	Lab assignment	
	Explanation	
	Conversation	
7. The electronic version of the source code, test files	• Lab assignment	
and any other files required to test Project 2. Project	Explanation	
2 demonstration	Conversation	
Bibliography		

- 1. Czibula, I., G., Use of search techniques to software development, Editura Risoprint, ISBN 978-973-53-0119-4, 2009 (248 pagini)
- 2. Mark Harman and Bryan F. Jones. Search-based software engineering. Information & Software Technology, 43(14):833-839, 2001.
- 3. Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of refactorings for improving the class structure of object-oriented systems. In GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 1909{1916, New York, NY, USA, 2006. ACM Press.
- Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In CSMR '01: Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, pages 30-38, Washington, DC, USA, 2001. IEEE Computer Society.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• A theoretical research report on a SBSE topic, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%
	• The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	40%
	• Class attendance	4 unmotivated absences are accepted, but each unmotivated absence other than those specified above are penalised	10%
10.5 Seminar/lab activities	• A software project developed using an open source ML software	Evaluation of the project (documentation and demonstration)	15%
	• A software project on a SBSE topic will be fully implemented, without using existing ML libraries.	Evaluation of the project (software implementation, documentation and demonstration)	15%
10.6 Minimum performance	ce standards		
• Each student has to pro	ove that (s) he acquired an acceleration	eptable level of knowledge and	understanding of the

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the SBSE field, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

• Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator
10.04.2018	Prof. Istvan Gergely Czibula	Prof. Istvan Gergely Czibula
Date of approval	Signature of the head of department	
	Prof. dr. Anca Andreica	