SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master's degree
1.6 Study programme /	Inteligenta Computationala Aplicata
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Introduction to Automated Driving				
(ro)		Introducere in conducerea automata				
2.2 Course coordinator		Dr. Mathe Stefan				
2.3 Seminar coordinator		Dr.	Dr. Mathe Stefan			
2.4. Year of study	r of study 1 2.5 Semester 2 2.6. Type of evaluation E 2.7 Type of discipline Option				Optional	
2.8 Code of the discipline MME8160				1	,	·

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					13
Evaluations					3
Other activities:					0

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Computer programming, calculus, linear algebra, data		
	structures and algorithms, artificial intelligence		
4.2. competencies	 mathematics, programming, analytical skills 		

5. Conditions (if necessary)

5.1. for the course	• N/A
5.2. for the seminar /lab	The presence is mandatory
activities	

6. Specific competencies acquired

o. Specin	c competencies acquired
S	C1: Operating with basic concepts of mathematics, physics, measurement science, mechanical
ıci	engineering, chemical engineering, electrical engineering in systems engineering
ete	C2: Operating with basic concepts of computer science, information technology and communication
competencies	C3: Operating with fundamentals of control engineering, process modelling, simulation, identification and
COI	analysis methods, and computer aided design.
lal	C4: Design, implementation, testing, operation and maintenance of systems with generic and dedicated
Professional	equipment, including computer networks for control engineering and applied informatics.
Les	C5: Development and implementation of automatic control structures and algorithms based on project
Sro	management principles, software environments and technologies based on microcontrollers, signal
_	processors, programmable logic controllers and embedded systems.
	CT1: Applying the organized and efficient work rules, and a responsible attitude towards the didactic-
es	scientific field, for the creative valorization of their own potential, by respecting the principles and norms
rsa	of professional ethics.
sve	CT3: Using effective methods and techniques of efficient learning, get informed, research and
Transversal competencies	development of the capabilities to use the knowledge, adapting to the requirements of a dynamic society
T ₁	in the communication era.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Build system, software and algorithms development skills in the area of autonomous driving
7.2 Specific objective of the	Understanding the technology and strategies used for autonomous driving
discipline	Understanding of algorithms for perception and sensors data fusion
	Get an overview on connectivity in vehicles

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in automated driving (1 course)	Slides presentation,	
2. Ultrasonic and electromagnetic sensors (2	explanations and	
courses)	demonstrations,	
a) Ultrasonic	discussions, case	
- Physical principles of operation of ultrasonic	studies	
sensors		
- Applications where the sensor is best to be		
used (technologies for driver assistance		
systems based on ultrasonic sensors)		
b) LiDAR		
- Principles of operation and examples		
- Applications where the sensor is best to be		
used		
c) RADAR		
- Sensor model		
- Applications where the sensor is best to be		

	used		
2			
	Video sensor (3 courses)		
a)	Image processing basics		
-	Image transformations, image filtering, edge		
1.	detection		
(b)	Computer vision basics		
-	Image representation & acquisition		
-	Camera model		
-	Distortion correction		
(c)	Stereo video processing		
-	Epipolar geometry basics		
-	Stereo camera model		
-	Rectification		
-	Disparity estimation		
d)	Optical flow		
4			
	Classification and object detection (3 courses)		
(a)	Machine Learning review		
-	Supervised learning		
-	Unsupervised learning		
-	Reinforcement learning		
(b)	Deep Learning		
-	Relation to machine learning		
-	Deep feedforward networks (cross entropy,		
	regularization, dropout)		
-	Back propagation		
-	Convolutional neural networks		
-	Recurrent neural networks		
-	Examples of DNN architectures		
5.	Sensor data fusion for perception and		
	localization (1 course)		
-	State estimators and Kalman filter		
-	Extended Kalman filter		
-	Fusion of video and RADAR sensors data		
-	GPS and odometry fusion for localziation		
-	Localization techniques & precise mapping		
6.	Connectivity (2 courses)		
-	Introduction to connectivity and cloud		
	computing		
-	Big data analytics methods for automated		
	driving		
/.	Office hours and exam Q&A session (1		
Diblia	course)		
Biblio	- 1 •	the courses	
	Explore articles on autonomous driving (shared or		5
	nation: From Driver Assistance Systems to Autom	ated Diffyllig, VDA, 201	J
	notive handbook, Robert Bosch GmbH, 2007	Tanahina mathada	Damarka
	minar / laboratory	Teaching methods	Remarks
1.	Radar sensors application (ex: RARAD-based		
2	objects detection)		
2.	Video sensors application 1(ex: 3D		
	reconstruction)		

3. Video sensors application 2 (ex: occupancy-	
grid based free-space)	
4. Machine learning application	
5. Deep learning application (ex: objects	
detection)	
6. Sensor data fusion application (ex: Kalman	
filters)	
Bibliography	
- Will be shared at each laboratory	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course and applications is developed together with an automotive company

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Evaluation of the acquired skills, activity within lectures and seminars	Exam	100%			
10.5 Seminar/lab activities	Evaluation of the practical skills, activity within laboratory classes	Will be evaluated as part of the final exam (row above)	0%			
10.6 Minimum performance standards						
Exam grade > 5						

Date	Signature of course coordinator	Signature of seminar coordinator
03.05.2018	Dr. Mathe Stefan	Dr. Mathe Stefan
Date of approval	Signature of the head of department	
	Prof. Dr. Andreica Anca	