SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Computer Science/ Applied Computational Intelligence			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Knowledge Based Systems and Language Technology								
2.2 Course coor	rdin	ator	Lecturer Ph.D. Lupea Mihaiela					
2.3 Seminar co	ordi	nator		Lecturer Ph.D. Lupea Mihaiela				
2.4. Year of	1	2.5	2	2.6. Type of	exam	2.7 Type of	compulsory	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	e 2	3.3 seminar/laboratory	1 sem
					+1pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	e 28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					10
Evaluations					20
Other activities: individual project					34
3.7 Total individual study hours 144					

517 Total mai radai stady nouis	- · ·
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Machine learning
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	• Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Professional competencies	 Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Advanced ability to approach, model and solve phenomena and problems from natural language and economy using fundamental knowledge from mathematics and computer science; Ability to approach and solve complex problems using various techniques of computational intelligence; Proficient use of methodologies and tools specific to programming languages and software systems.
Transversal competencies	 Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the basic principles, technologies and applications of Language Technology (LT) and Knowledge based systems. To understand the current state of the art in LT in order to realize original research in LT.
7.2 Specific objective of the discipline	• Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms (clustering, machine learning) and techniques (unsupervised, supervised) to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, information extraction, anaphora resolution) in Natural Language Processing domain.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1.	Exposure: description,	
Natural Language Processing (NLP): stages, domains, applications.	explanation, examples,	
	debate, dialogue	
Course 2.	Exposure: description,	
- WordNet: knowledge structure, semantic relations,	explanation, examples,	
lexical relations, applications, interfaces; corpora.	debate, dialogue	
- Part–of–speech tagging.		
Course 3. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level construction;	explanation, examples,	
- Cocke-Kasami-Yonger (CKY) algorithm;	debate, dialogue	

Course 4. Statistical parsing	Exposure: description,
- Probabilistic Context-Free Grammars (PCFG);	explanation, examples,
- Probabilistic CKY (Cocke-Kasami-Yonger) parsing of PCFGs	debate, dialogue
Course 5. Hidden Markov Model (1)	Exposure: description,
- Markov chains, Hidden Markov Model(HMM);	explanation, examples,
- three canonical problems associated with HMM	debate, dialogue
- the forward algorithm; the Viterbi algorithm	
Course 6. Hidden Markov Model (2)	Exposure: description,
- the Baum-Welch algorithm for HMM;	explanation, examples,
- applications to part–of-speech tagging.	debate, dialogue
Course 7. Word Sense Disambiguation (1)	Exposure: description,
- unsupervised (by clustering);	explanation, examples,
- dictionary based approach (Lesk, Yarowsky).	debate, dialogue
Course 8. Word Sense Disambiguation (2)	Exposure: description,
- machine learning approach;	explanation, examples,
- the bootstraping algorithm	debate, dialogue
Course 9. Document summarization	Exposure: description,
- aproaches based on clustering, graphs and Formal	explanation, examples,
Concept Analysis	debate, dialogue
Course 10. Anaphora and co-reference resolution	Exposure: description,
- hard constraints and preferences	explanation, examples,
Hobb's algorithm, Lapin and Lease algorithmMitkov's algorithm	debate, dialogue
Course 11. Opinion mining/Sentiment analysis	Exposure: description,
	explanation, examples, debate, dialogue
Course 12. Textual entailment	Exposure: description,
	explanation, examples,
	debate, dialogue
Course 13. Information extraction	Exposure: description,
	explanation, examples,
Course 14. Students' presentations of the practical project.	debate, dialogue Debate, dialog

Bibliography

- 1. J.ALLEN : Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University,1994.
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.
- 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2 Se	eminar / laboratory	Teaching methods	Remarks		
1. W	Vorking with WordNet, Romanian WordNet and	Explanation,	The seminar/lab is		
W	VordnetSimilarity tool.	dialogue, case studies	structured as 2 hours		
			classes every second week		
2. W	Vorking with dedicated parsers and taggers	Explanation,			
(5	Stanford, CST tools, Racai tools)	dialogue, case studies			
3. St	tudents' presentations of the theoretical papers	Dialogue, debate			
4. St	tudents' presentations of the theoretical papers	Dialogue, debate			
5. W	Vorking with dedicated tools for information	Explanation,			
sı	ummarization, anaphora and co-reference	dialogue, case studies			
re	esolution				
6. W	Vorking with dedicated tools for information	Explanation,			
ez	xtraction, sentiment analysis.	dialogue, case studies			
7. St	udents' presentations of the practical projects.	Dialogue, debate			
Biblic	Bibliography				
	1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html				

2. Resurse lingvistice in limba romana: <u>www.racai.ro</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation	1		
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
			the grade (%)
10.4 Course	 know the theoretical concepts of the domain; apply the course methods, algorithms in problem solving 	Written exam	30%
10.5 Seminar/lab activities	- know to synthesize and compare different approaches/results of the same studied subject.	Theoretical paper based on recent research papers in NLP domain;	30%
	- be able to implement course algorithms	Practical project - implementation of a NLP tool based on the studied methods	30%
	Class attendance		10%
10.6 Minimum perfo	ormance standards		•
The final gra	de to be at least 5 (from a scale of 1 to	10).	

Date	Signature of course coordinator	Signature of seminar coordinator
05.05.2019	Lecturer Ph.D. Lupea Mihaiela	Lecturer Ph.D. Lupea Mihaiela

Date of approval

Signature of the head of department

.....

Prof. Ph.D. Andreica Anca