SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High Performance Computing and Big Data Analytics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Programming paradigms							
2.2 Course coor	din	ator		Prof.PhD. Bazil Parv	/		
2.3 Seminar coordinator				Prof.PhD. Bazil Parv			
2.4. Year of	1	2.5 Semester	1	2.6. Type of	Ε	2.7 Type of discipline	compulsory
study				evaluation			
2.8 Code of the	2.8 Code of the discipline MME80			028			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/lab	1s+1pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/lab	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					22
Additional documentation (in libraries, on electronic platforms, field documentation)					22
Preparation for seminars/labs, homework, papers, portfolios and essays				20	
Tutorship					15
Evaluations					15
Other activities:					_
3.7 Total individual study hours		94			
3.8 Total hours per semester		150			

3.9 Number of ECTS credits **6**

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Programming
	Object-Oriented Programming
	Functional and Logic Programming
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	Computers, Internet access, UML tool
activities	

6. Specific competencies acquired

Professional competencies	 Understanding and working with basic concepts in computer programming; Capability of analysis and synthesis; Proficient use of tools and languages specific to software systems development; Knowing the specifics of main programming paradigms.
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results; Independent work capabilities; able to fulfill different roles; Antepreneurial skills.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of programming. Be able to apply different programming paradigms to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students should know the main features of different programming paradigms: procedural, object-oriented, concurrent, functional, logical, event-based, scripting have a good understanding of the following concepts: value, type, variable, binding, procedural abstraction, data abstraction, object, class, component, interface, polymorphism; learn the similarities and differences between different programming paradigms in terms of the concepts they implement

8. Content

8.1 Course	Teaching methods	Remarks
1. <i>Programming paradigms</i> . Definitions. Main programming paradigms. Programming styles. Evolution of programming languages	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. <i>Basic concepts 1</i> . Values and types. Variables and storage	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. <i>Basic concepts 2</i> . Bindings and scope. Control flow	 Interactive exposure Explanation Conversation Didactical demonstration 	
4. Advanced concepts 1. Type systems. Composite types	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. <i>Advanced concepts 2</i> . Subroutines and control abstraction (procedural abstraction)	 Interactive exposure Explanation Conversation Didactical demonstration 	
6. Advanced concepts 3. Data abstraction and object orientation. Generic abstraction	 Interactive exposure Explanation Conversation Didactical demonstration 	
7. <i>Advanced concepts 4</i> . Errors and events. Concurrency	 Interactive exposure Explanation Conversation 	

	Didactical demonstration
8. <i>Paradigms 1</i> . Imperative programming	Interactive exposure
	• Explanation
	Conversation
	Didactical demonstration
9. Paradigms 2. Object-oriented programming	Interactive exposure
i i i i i ji i i ji i i i i i i i i i i	• Explanation
	Conversation
	Didactical demonstration
10. Paradigms 3. Concurrent programming	Interactive exposure
	• Explanation
	Conversation
	Didactical demonstration
11. Paradigms 4. Functional programming	Interactive exposure
The analysis in another programming	• Explanation
	Conversation
	Didactical demonstration
12. Paradigms 5. Logic programming	Interactive exposure
12.1 dradgins 5. Logic programming	• Explanation
	Conversation
	Didactical demonstration
13. Paradigms 6. Event-driven programming	Interactive exposure
	Conversation
14. Paradigms 7. Scripting	Interactive exposure
	• Explanation
	Conversation
	Didactical demonstration
Bibliography	
1. SCOTT, MICHAEL L.: Programming Language Pragma	tics 4 th ed Morgan-Kaufmann 2016
2. SEBESTA, ROBERT W.: Concepts of Programming Lan	
3. SZYPERSKI, CLEMENS: Component Software. Beyond	
ed. 1998, 2 nd ed. 2002 with GRUNTZ, DOMINIK and MU	
4. STROUSTRUP, BJARNE: The C++ Programming Lang.	
2	auge special Euron, receising, 2000 enapter
-	as and Models of Computer Programming MIT
 VAN ROY, PETER; HARIDI, SEIF: Concepts, Technique Press, 2004 	es ana models of Computer Programming, MII

- 6. WATT, David A.: Programming Language Design Concepts, Wiley, 2004
- 7. WEGNER, PETER: Concepts and paradigms of OOP, OOPSLA '89 Keynote talk

7. WEONER, TETER. Concepts and paradigins of OOI, OC	JI SLA 67 Keyhole taik	
8.2 Seminar / laboratory	Teaching methods	Remarks
 Establishing the programming language PL for paper Paper title: Programming language analysis – PL Requirements for paper Calendar/schedule of seminars/activities Weeks 1-4 	Conversation, debate, case studies, presentations	Seminar is organized as a total of 14 hours – 2 hours every other week
 Paper presentations phase 1 Weeks 5-9 	Presentation, discussion	
3. Paper presentation phase 2 Weeks 10-14	Presentation, discussion	
4. Paper final version Week 14		

Bibliography

Students will search and use programming paradigms documentation

- on the department server (win/labor/Romana/master/PP)
- on the web, using main CS databases

The ELISA project http://jklunder.home.xs4all.nl

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering • studies;
- Courses with similar content are taught in the major universities in Romania offering similar study • programs;
- Course content is considered very important by the software companies for improving average • software development skills

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Knowledge of the basic concepts of programming Ability to apply different paradigms to different problem domains 	• Written exam grade	40%
10.5 Seminar/lab activities	• Ability to study and analyse literature regarding a concrete programming language	 Paper grade Seminar/lab attendance Default 	40% 10% 10%
Paper evaluation detailed		 Scheduling and presentation Presentation phase 1 Presentation phase 2 Compliance to general requirements Structure Content 	2 x 5% 10% 10% 10% 20% 40%

10. Evaluation

• At least grade 5 (from a scale of 1 to 10) at written exam, and paper work.

Signature of course coordinator Signature of seminar coordinator April 19, 2018 Prof.PhD. Bazil PARV Prof.PhD. Bazil PARV Date of approval Signature of the head of department

.....

Date

Prof.PhD. Anca ANDREICA