SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component based programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Design of interactive software systems							
2.2 Course coordinatorPh. D. Lecturer Adriana-Mihaela Guran							
2.3 Seminar coordinatorPh. D. Lecturer Adriana-Mihaela				aela Guran			
2.4. Year of	1	2.5 Semester	2	2.6. Type of	E	2.7 Type of	Optional
study				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per wee	k	4	Of which: 3	.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in	the curriculum	56	Of which: 3	.5 course	28	3.6	28
						seminar/laboratory	
Time allotment:	Time allotment:						
Learning using ma	anual, course support,	bibli	ography, cou	rse notes			40
Additional docum	entation (in libraries, o	on ele	ectronic platf	orms, field	docum	nentation)	45
Preparation for ser	minars/labs, homewor	k, pa	pers, portfoli	os and essa	ys		24
Tutorship 8							8
Evaluations 2							2
Other activities:							
3.7 Total individual study hours 119							
3.8 Total hours 175							
per semester							
3.9 Number of 7							
ECTS credits							

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	A room with Internet access and presentation devices
5.2. for the seminar /lab	A room with computers and Internet access
activities	

6. Specific competencies acquired

Professional competencies	 Proficient use of verification, validation, and evaluation criteria and methods to his/her own software solutions, ability to formulate value judgements and to justify/explain constructive decisions Use advanced skills to develop and conduct complex software projects, of practical and/or research nature, using a wide range of quantitative and qualitative methods Advanced communication skills within different professional environments, appropriate use of computer science vocabulary, good English knowledge Demonstrate advanced modeling skills for economic, industrial, scientific phenomena and processes, by using fundamental mathematical, statistical, and computer science knowledge
Transversal competencies	 Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Organization of software production processses Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

<u> </u>	(outcome of the acquired competencies)			
7.1 General objective of the	• To understand and approach problems of modeling nature from			
discipline	other sciences			
	• To design/develop usable systems			
	• To be able to evaluate the usability of a system and to be able to find			
	improvement methods regarding the usability of a system			
	• To be aware of accessibility issues in systems design			
	• To be able to develop multiplatform applications			
7.2 Specific objective of the	At the end of the semester students must be able to:			
discipline				
	• understand the human capacities in interaction with software			
	systems			
	• achieve knowledge of psychological aspects of			
	human-computer interaction			
	numan-computer interaction			
	• understand the importance of real users in the development of			
	interactive systems			
	• indentify the best communication methods with the clients			
	• use knowledge and models form sociological sciences in			

order to improve the communications with clients
• be able to apply user centered design
• achieve usability related notions
• be able to apply automatic usability evaluation methods
• design and develop groupware systems
• apply interaction design patterns
• use interface abstract description languages
develop plastic user interfaces
• develop adaptive and adaptative user interfaces

8. Content

8.1 Cours	e	Teaching methods	Remarks
1. Intera • • •	ction Design What is ID? HCI and ID UCD and ID Professions in ID	Presentation, discussions, case studies, problem solving	
2. Basics	of Human-Computer Interaction Human factor in HCI Input/output channels Capacities, limitations Computer Output devices Virtual reality and 3D devices Non-conventional interaction devices Usability Errors 	Presentation, discussions, case studies, problem solving	
3. Intera	 ction Design Process Interaction design lifecycle models Needs and requirements Interaction models Interaction style 	idem	
4.	 Task Analysis Fundamentals of task analysis Task analysis methods: HTA, GTA Task analysis tools:EUTERPE, CTTE The Bridge Method 	idem	

5. Interdisciplinary approaches in Usability	idem
Engineering – a focus on user needs analysis	
 Qualitative vs quantitative approaches 	
A framework for early usability	
integration in the development of	
interactive softweare systems	: J
6. Conceptual Models in Interaction Design	idem
Conceptual models	
Metaphors	
Interaction modes	
7. Prototyping vs. Pretotyping	idem
 prototyping 	
pretotyping case studies	
case studies	
8. Graphic elements in user interfaces	idem
8. Graphic elements in user interfaces	laem
Basic graphic elements in UIs	
Criteria and recommendations for graphic	
elements	
 Focus, flow and layout in UI design 	
9. Usability engineering & User experience	idem
What is usability?	
Designing for usability	
Usability engineering lifecycle	
Usability metrics	
Measuring user experience	
10. Web Usability& Mobile Usability	idem
Designing for web	
Designing for mobile	
11. Designing for accessibility	idem
Disabilities	
Accessibility	
Accessibility APIs	
Accessibility evaluation	
12. Designing Gestural Interfaces	idem
Gesture definition	
Gesture definition Gesture in everyday life	
Designing interactive gestures	

Interface conventions		
13. Designing Social Interfaces	idem	
 History of computer mediated interaction Social network vs. social media 		
14. User Interface Testing	idem	
GUI Testing		
Model-based testing		
Web applications testing		

Bibliography:

1. Alan Dix, Janet Finlay, Gregory D Abowd, Russell Beale - Human-Computer Interaction,

Prentice Hall, third edition, 2004

- 2. Donald A. Norman Emotional Design Why we love (or hate) everiday things, 2004
- 3. Martijn van Welie Task-based User Interface Design, 2001
- 4. Donald A Norman The design of everyday things, basic Books, 1988
- 5. Fabio Paterno Model-based design and evaluation of interactive applications, Springer, 1999
- 6. Jennifer Tidwell Designing Interfaces: Patterns for Effective Interaction Design, O@Reilly, 2005
- 7. Jacob Nielsen Usability Engineering, Academic Press, 1993
- 8. Marc Hassenzahl- Experience Design: Technology For All The Right Reason, Morgan & Claypool, 2010
- 9. Alberto Savoya Pretotyping IT, 2011

10.Tom Tullis, William Albert – Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008

8.2 Seminar / laboratory	Teaching methods	Remarks
Students will have to choose a project subject refering a		
medium size application that will be developed using a		
user centered approach (week 4). The project willl be		
developed in teams of 3-5 members		
Project design and development :		
1. Users identification		
2. Justify the need for the proposed product		
3. Functionalities identification (Week		
4-Week 6)		
4. Building the conceptual model		
5. Creating protoypes		

6.	Evaluating prototypes (Week 8)	
7.	Applying the required changes to the prototype	
8.	Usability testing (Week 11)	
9.	Applying changes to the developed product in order to be used by people with disabilities/ designing an non-conventional interaction method to the product (Week 14)	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Students will be able to design interaction based on a user centred approach and to evaluate the quality of their prototypes, enhancing the quality of the developed products. Students will optionally present a technical report on a subject in the domain of Interaction Design evaluated to at most 1 point from the final grade.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course			
10.5 Seminar/lab activities	Project – students will be graded based on the quality of their projects and based on the quality of their technical reports (the project will represent 90% of the final grade and the technical report will represent 10% of the final grade). Technical report presentation is optional.	 Grading of the project will be done for every stage in project development, the final grade will be computed based on the following criteria: Use of appropriate methods to identify user needs (25%) Use of design principles (30%) Usability of the application (measured using a method from the literature) (30%) Accessibility (15%) Grading for the technical report 	100%

	 will be done based on the following criteria: State of the art in the approached subject Identification of new problems/solutions to be studied Quality of references Oral presentation 			
10.6 Minimum performance standards				
Students have to deliver a working software product that satisfies the client requirements.				

Date	Signature of course coordinator	Signature of seminar coordinator
17.04.2018	Ph. D. Lecturer Adriana (Guran Ph. D. Lecturer
Adriana Guran		

Date of approval

Signature of the head of department

.....

Ph. D. Prof. Anca Andreica