SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of th	e di	scipline					
(en) R			Re	Resource Aware Computation			
(ro)			Calcul Sensibil la Consumul de Resurse				se
2.2 Course coordinator				Assoc. Prof. Eng. Florin Craciun			
2.3 Seminar co	ord	inator		Assoc. Prof. Eng.	Florir	n Craciun	
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

	4	00.1:1.00	2	2.2	1
3.1 Hours per week	4	Of which: 3.2	2	3.3	lsem
		course		seminar/laboratory	+ 1pr
3.4 Total hours in the curriculum	56	Of which: 3.5	28	3.6	28
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					59
Tutorship					10
Evaluations					10
Other activities:				-	
3 7 Total individual study hours		119			

5.7 Total individual study nours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•	None
4.2. competencies	•	Basic software development skills
	Procedural and Object-oriented paradigms	

5. Conditions (if necessary)

5.1. for the course	projector
5.2. for the seminar	projector

6. Specific competencies acquired

Professional competencies	 Understanding and working with basic concepts in software engineering; Knowledge, understanding and use of basic concepts of theoretical Computer Science Capability of analysis and synthesis; Proficient use of methodologies and tools specific tool software systems
Transversal	 Good programming skills in high-level languages Improved programming shilities: debugging and correcting compilers
competencies	 Improved programming abilities: debugging and correcting compilers errors Ability to apply compiler techniques to different real life problems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• To understand fundamental concepts of software quality.
discipline	• To be able to apply basic methods for software analysis and software quality assurance.
7.2 Specific objective of the discipline	To understand the compiler optimizations
	• To acquire a modern programming style
	• To understand how the resources(memory, CPU, batery) are used by the programs

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
 Program analysis: principles, program optimizations. 	Exposure,description, explanation, debate and dialogue, discussion of case studies	
2. Intermediate program representations.	explanation, debate and dialogue, discussion of case studies	
3. Program properties representation. Lattices	Exposure,description, explanation	
4. Dataflow Analysis: principles	Exposure, description, explanation	
5. Forward Dataflow Analysis	Exposure,description, explanation, discussion of case studies	
6. Backward Dataflow Analysis	Exposure,description, explanation, discussion of case studies	
7. Interprocedural Dataflow Analysis	Exposure, description, explanation,	

8. Control-Flow analysis	Exposure, description,		
	explanation		
9. Alias analysis	Exposure, description,		
	explanation,		
	discussion of case		
	studies		
10. Alias analysis	Exposure, description,		
	explanation,		
	discussion of case		
	studies		
11. Flow analysis	Exposure, description,		
	explanation,		
	discussion of case		
	studies		
12. Flow analysis	Exposure, description,		
12. 1 10 W ulluly 515	explanation,		
	discussion of case		
	studies		
13. Taint analysis	Exposure, description,		
15. Tallit allarysis			
	explanation,		
	discussion of case		
14 D 1 1	studies		
14. Race analysis	Exposure, description,		
	explanation,		
	discussion of case		
	studies		
Bibliography			
1. Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of			
ProgramAnalysis, Springer, 1999.			

- 2. Advanced Compiler Design and Implementation, by Muchnick. Morgan Kaufmann 1997
- 3. Benjamin C. Pierce. Types and Programming Languages
- 4. Neil D. Jones, Flemming Nielson. Abstract Interpretation: a Semantic-Based Tool for Program Analysis, in: Handbook of logic in computer science (vol. 4). Oxford University Press, 1995

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Research papers presentations	Use practical tools to	Seminar is
	implement group	organized as a
	projects. Discuss	total of 14 hours –
	research papers.	2 hours every
		second week
		Project is every
		week.
2. Dataflow project for a simple object-oriented	Use practical tools to	
language: program representation	implement group	
	projects. Discuss	
	research papers.	
3. Research papers presentations	Use practical tools to	
	implement group	
	projects. Discuss	
	research papers.	
4. Dataflow project for a simple object-oriented	Use practical tools to	

languaga: intra propadural analyzia	implement group			
language: intra-procedural analysis	implement group			
	projects. Discuss			
	research papers.			
5. Research papers presentations	Use practical tools to			
	implement group			
	projects. Discuss			
	research papers.			
6. Dataflow project for a simple object-oriented	Use practical tools to			
language: inter-procedural analysis	implement group			
	projects. Discuss			
	research papers.			
7. Project presentation	Use practical tools to			
	implement group			
	projects. Discuss			
	research papers.			
Bibliography				
- research papers				
 documentation of the practical tools used by the projects 				
documentation of the practical tools about by the projects				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- The content of the course is considered by the software companies as important for average software development skills

10.	Evaluation	
-----	------------	--

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
			the grade (%)
10.4 Course	- know the basic principle of	Written exam	50.00%
	the domain;		
	- apply the course concepts		
	- problem solving		
10.5 Seminar/lab	- be able to implement	-Practical projects	50.00%
activities	course concepts		
	- be able to do a critical		
	evaluation of research		
	papers		
	- to be able to write a critical		
	essay		
10.6 Minimum perform	nance standards		
At least grade	5 (from a scale of 1 to 10) at both v	written exam and laboratory	work.

Date	Signature of course coordinator	Signature of seminar coordinator
	Assoc. Prof. Eng. Florin CRACIUN	Assoc. Prof. Eng. Florin CRACIUN

Date of approval

Signature of the head of department

.....