SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science (in Romanian)
Qualification	

2. Information regarding the discipline

2.1 Name of the	di	scipline	Te	st Design Technique	S		
2.2 Course coordinator				Lecturer PhD Camelia Chisăliță-Crețu			
2.3 Seminar coordinator				Lecturer PhD Camelia Chisăliță-Crețu			
2.4. Year of	3	2.5	6	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	
2.8 Discipline MLE5110			•	•			
Code	MILESIIU						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 lab +
				seminar/laboratory	1 project
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					15
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					5
Evaluations					22
Other activities:				-	
3.7 Total individual study hours		77			

3.7 Total individual study hours	77
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	OOP, Programming Fundamentals, Advanced Programming Methods
4.2. competencies	Good programming skills in at least one of the programming
	languages Java, C#

5. Conditions (if necessary)

5.1. for the course	Course hall with projector	
5.2. for the seminar /lab	 Laboratory: computers and use of a programming language 	
activities	environment	

6. Specific competencies acquired

Professional competencies	• • •	 C2.1 Identify adequate software systems development methodologies C1.2 Identify and explain specific test design techniques that correspond to a testing level. C1.3 Source code and goal oriented test elaboration in a well-known programming language. C4.3 Identify models and methods adequate to real life problem solving.
Transversal competencies	•	CT1 Apply rules to organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics. CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Enhance the students understanding of testing and test design techniques. Provide the students with an environment in which they can explore the usage and usefulness of software testing and test design concepts in various business scenarios. Induce a realistic and industry driven view of software testing concepts and their inherent benefits.
7.2 Specific objective of the discipline	 Give students the ability to explore various test design techniques applied to different levels of testing. Improve the students' abilities to tackle on goal driven testing. Enhance the students understanding of test design techniques value in business. Students will be able to use various tools for the testing process (i.e., test management, test running, test reporting and bug reporting). Students will be able to design test cases according to an established testing goal and using specific test design technique in order to investigate the software.

8. Content

8.1	Course	Teaching methods Re	emarks
1.	Software Testing. Test Design Techniques	Interactive exposure	
	1.1. Software Testing. Goals. Scope	Explanation. Conversation	
	1.2. Test Design Technique. Attributes	Didactical demonstration	
	1.3. Taxonomy of Test Design Techniques		
2.	Coverage-based Techniques I	Interactive exposure	
	2.1. Focus. Objectives	Explanation. Conversation	
	2.2. Tours	Didactical demonstration	
3.	Coverage-based Techniques II	Interactive exposure	
	3.1. Specification-based Testing;	Explanation. Conversation	
	3.2. Requirements-based Testing;	Didactical demonstration	
4.	Tester-based Techniques I	Interactive exposure	
	4.1. Focus. Objectives	Explanation. Conversation	
	4.2. User Testing. Alpha Testing. Beta	Didactical demonstration	
	Testing		
5.	Tester-based Techniques II	Interactive exposure	
	5.1. Bug Bashes. Paired Testing.	Explanation. Conversation	
		Didactical demonstration	

6. Activity-based Techniques	Interactive exposure
6.1. Focus. Objectives	Explanation
6.2. Guerilla Testing. All-pairs Testing	Conversation
6.3. Use Cases Testing. Scenario Testing	Didactical demonstration
7. Evaluation-based Techniques I	Interactive exposure
7.1. Focus. Objectives	Explanation. Conversation
7.2. Function Equivalence Testing. Self-	Didactical demonstration
verifying data	
8. Evaluation-based Techniques II	Interactive exposure
8.1. Comparison with saved Results;	Explanation. Conversation
8.2. Diagnostics-based Testing;	Didactical demonstration
9. Desired result-based Techniques I	Interactive exposure
9.1. Focus. Objectives	Explanation. Conversation
9.2. User Acceptance Testing	Didactical demonstration
10. Desired result-based Techniques II	Interactive exposure
10.1.Confirmation Testing;	Explanation. Conversation
10.2.Certification Testing;	Didactical demonstration
11. Risk-based Techniques	Interactive exposure
11.1.Focus. Objectives	• Conversation
11.2.Quicktests. History-based Testing.	
Usability Testing	
12. Test Design Techniques Analysis	Interactive exposure
	Conversation

Bibliography

[Pres10] R. S. Pressman, Software engineering: a practinioner's approach, seventh edition, Higher Education, 2010.

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009

[You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John Wiley & Sons, 2008.

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008.

[Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008.

[Pat05] R. Patton, Software Testing, Sams Publishing, 2005.

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004.

[Brn02] I. Burnstein, Practical Software Testing, Springer, 2002.

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Perry97] W.E.Perry, R.W. Rice, Surviving the Top Ten Challenges of Software Testing – A People Oriented Approach, Dorset House Publishing, 1997.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.

[Page08] A. Page, K. Johnston, B. Rollison, Microsoft, How We Test Software at Microsoft, 2008.

[Whitt2012] J. Whittaker, J. Arbon J. Carollo, How Google Tests Software, Google, Pearson Education, 2012.

	12.		
8.2	2 Seminar / laboratory	Teaching methods	Remarks
1.	Laboratory 1	Presentation, Conversation, Problematizations,	
	Testing tools and platforms.	Discovery, Other	
	Testing Project Setup.	methods – individual study, exercises	
2.	Laboratory 2	Presentation, Conversation, Problematizations,	
	Coverage-based Test Design	Discovery, Other	
	Techniques	methods – individual study, exercises	
3.	Laboratory 3	Presentation, Conversation, Problematizations,	
	Tester-based Test Design Techniques	Discovery, Other	
		methods – individual study, exercises	

4. Laboratory 4 Activity-based Test Design Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
5. Laboratory 5 Evaluation-based Test Design Techniques	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
6. Laboratory 6 Project turn-in	Evaluation	
References: See references from Lectures.		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply test design techniques for a software product, in a similar way they are used in industry.
- Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Students will turn in during	Oral Examination	50%
	the examination session a		
	report on a previously stated		
	test design technique topic.		
	The corresponding grade is		
	denoted by R .		
10.5 Seminar/laboratory	Each lab activity will be	Laboratory Activity	50%
activities	graded. The arithmetic		
	average of the grades is		
	denoted by L.		

Remark:

• Laboratory assignments will pe achieved in groups of 2-3 students.

10.6 Minimum performance standards

- Students will be able to apply test design techniques according to established goals for a software system.
- Students will be able to unstandard the differences between software testing goal, scope, and test design technique concepts.
- The final grade (M) is computed as follows: M = 50%R + 50%L.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date

Signature of course coordinator

Signature of seminar coordinator

20.04.2018

Lect. PhD. Camelia Chisăliță-Crețu,

Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Prof. PhD. Anca Andreica