SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Probability Theory							
2.2 Course coordinator Lect. Prof. PhD. Roşca Natalia							
2.3 Seminar coordinator				Lect. Prof. PhD. Roşca Natalia			
2.4. Year of	2	2.5	4	2.6. Type of	E	• •	
study		Semester		evaluation		discipline	Fundamental

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					6
Evaluations					7
Other activities:				-	
0.7 m + 11 11 11 1 + 1 1		4.4			•

3.7 Total individual study hours	44
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis 1, Mathematical Analysis 2, Algebra
4.2. competencies	Limit and Integral Calculus, Set Theory

5. Conditions (if necessary)

5.1. for the course	Lecture room with blackboard and video projector
5.2. for the seminar/lab activities	Seminar room with blackboard

6. Specific competencies acquired

	e competencies acquirea
Professional competencies	 C1.1. Identification of notions, description of theories and use of specific language C2.3. Application of appropriate theoretical models of analysis for solving given problems
Transversal competencies	CT2. Efficient development of group work activities

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquire basic knowledge of Probability Theory, with focus on theoretical aspects as well as applications
7.2 Specific objective of the discipline	 Application of classical probabilistic models to solve real life problems Become familiar with classical probability distributions Know the role of sequences of random variables in the study of social phenomena

8. Content

8.1 Course	Teaching methods	Remarks
Experiments, events, operations with events. Finite fields and finite probability spaces. Formulas on finite probability spaces. 2. Conditional probability. Independent events.	 Interactive exposure Explanation Conversation Didactical demonstration 	
Total probability formula. Bayes formula.	Interactive exposureExplanationConversationDidactical demonstration	
3. Classical probabilistic models (binomial, hypergeometric, multinomial, Poisson, Pascal, geometric).	Interactive exposureExplanationConversationDidactical demonstration	
Sigma - fields and infinite probability spaces. Properties.	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Random variables: definition, properties. Discrete random variables. 	Interactive exposureExplanationConversationDidactical demonstration	

 Cumulative distribution function: definition, properties, examples. 	 Interactive exposure Explanation Conversation Didactical demonstration
7. Probability density function: definition, properties. Continuous random variables.	 Interactive exposure Explanation Conversation Didactical demonstration
8. Random vectors, joint distribution function, joint density function. Marginal distributions and marginal densities.	 Interactive exposure Explanation Conversation Didactical demonstration
9. Operations with continuous random variables: sum, multiplication, division.	 Interactive exposure Explanation Conversation Didactical demonstration
10. Numerical characteristics of random variables: expectation, variance, standard deviation, moments, covariance, correlation coefficient.	 Interactive exposure Explanation Conversation Didactical demonstration
11. Characteristic function, definition, properties. Applications.	 Interactive exposure Explanation Conversation Didactical demonstration
12. Sequences of random variables. Convergence types and connections between them.	 Interactive exposure Explanation Conversation Didactical demonstration
13. Laws of large numbers. Weak law of large numbers. Markov, Chebyshev, Poisson and Bernoulli theorems. Strong law of large numbers.	 Interactive exposure Explanation Conversation Didactical demonstration
14. Lindeberg condition and central limit theorem. Moivre-Laplace theorem.	 Interactive exposure Explanation Conversation Didactical demonstration

Bibliography

- 1. AGRATINI, O., Capitole speciale de matematici, Lito., Univ. Babeș-Bolyai Cluj-Napoca, 1996.
- 2. BLAGA, P., RĂDULESCU, M., *Calculul probabilităților*, Lito., Univ. Babeș-Bolyai Cluj-Napoca, 1987.

- 3. BLAGA, P., *Calculul probabilităților și statistică matematică. Curs și culegere de probleme*, Vol. II, Lito.,Univ. Babeș-Bolyai Cluj-Napoca, 1994.
- 4. LISEI, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004.
- 5. LISEI, H., MICULA, S., SOOS, A., *Probability Theory through Problems and Applications*, Presa Universitară Clujeană, 2006.
- 6. SHELDON, R., A First Course in Probability, 8th edition, Pearson Prentice Hall, 2010.

8.2 Seminar	Teaching methods	Remarks
1. Euler's Gamma and Beta functions. Properties.	Explanation,	
Elements of combinatorics.	conversation,	
	examples.	
2. Probability calculus on a finite field.	Explanation,	
	conversation,	
	examples.	
3. Conditional probability. Independent events.	Explanation,	
Bayes formula.	conversation,	
	examples.	
4. Classical probabilistic models.	Explanation,	
	conversation,	
	examples.	
5. Geometric probability. Exercises.	Explanation,	
	conversation,	
	examples.	
6. Discrete random variables. Operations and	Explanation,	
exercises.	conversation,	
	examples.	
7. Continuous random variables. Operations and	Explanation,	
exercises.	conversation,	
	examples.	
8. Random vectors. Exercises.	Explanation,	
	conversation,	
	examples.	
9. Numerical characteristics of random variables.	Explanation,	
	conversation,	
	examples.	
10. Classical inequalities for numerical	Explanation,	
characteristics of random variables.	conversation,	
	examples.	
11. Characteristic function. Exercises.	Explanation,	
	conversation,	
	examples.	
12. Sequences of random variables. Exercises.	Explanation,	
	conversation,	
	examples.	
13. Convergence of sequences of random	Explanation,	
variables.	conversation,	
	examples.	
14. Limit theorems. Applications.	Explanation,	
	conversation,	
	examples.	

Bibliography

- 1. AGRATINI, O., *Probabilități Culegere de probleme*, Lito., Univ. Babeș-Bolyai Cluj-Napoca, 1992.
- 2. BLAGA, P., *Calculul probabilităților-Culegere de probleme*, Lito., Univ. Babeș-Bolyai Cluj-Napoca, 1984.
- 3. BLAGA, P., Calculul probabilităților și statistică matematică. Curs și culegere de probleme, Vol. II, Lito., Univ. Babeș-Bolyai Cluj-Napoca, 1994.
- 4. LISEI, H., MICULA, S., SOOS, A., *Probability Theory through Problems and Applications*, Presa Universitară Clujeană, 2006.
- 5. SHELDON, R., A First Course in Probability, 8th edition, Pearson Prentice Hall, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of the course is important because it covers basic concepts and topics in this field.
- The course exists in the studying program of all major universities in Romania and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Know the basic principles	Written exam.	80%			
	in Probability Theory					
10.5 Seminar	Be able to apply course	Continuous observation	20%			
	concepts on solving	during the semester,				
problems in this field participation to the seminar.						
10.6 Minimum performance standards						
 At least grade 5 (from a scale of 1 to 10) at the written exam 						

Date Signature of course coordinator Signature of seminar coordinator

18 April 2018 Lect. Prof. PhD. Roşca Natalia Lect. Prof. PhD. Roşca Natalia

Date of approval Signature of the head of department

Prof.dr. Agratini Octavian