SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e discipline	Pr	robability Theory			
2.2 Course coo	rdinator	r Prof. PhD. Agratini Octavian				
2.3 Seminar coordinator Lect. PhD. Roşca Natalia						
2.4. Year of	2 2.5	4	2.6. Type of	Ε	2.7 Type of	Compulsory/
study	Semester		evaluation		discipline	Fundamental

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays				10	
Tutorship				6	
Evaluations				7	
Other activities:				-	
3.7 Total individual study hours 44					-

3.7 Total individual study hours	44
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis 1, Mathematical Analysis 2, Algebra
4.2. competencies	Limit and Integral Calculus, Set Theory

5. Conditions (if necessary)

5.1. for the course	• Lecture room with blackboard and video projector
5.2. for the seminar/lab activities	• Seminar room with blackboard

6. Specific competencies acquired

or specific	
L Competencie S	 C1.1. Identification of notions, description of theories and use of specific language C2.3. Application of appropriate theoretical models of analysis for solving given problems
Transversal competencies	CT2. Efficient development of group work activities

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory, with focus on theoretical aspects as well as applications
7.2 Specific objective of the discipline	 Application of classical probabilistic models to solve real life problems Become familiar with classical probability distributions Know the role of sequences of random variables in the study of social phenomena

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
 Experiments, events, operations with events. Finite fields and finite probability spaces. Formulas on finite probability spaces. Conditional probability. Independent events. 	 Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure 	
Total probability formula. Bayes formula.	 Explanation Conversation Didactical demonstration 	
3. Classical probabilistic models (binomial, hypergeometric, multinomial, Poisson, Pascal, geometric).	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Sigma - fields and infinite probability spaces. Properties. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Random variables: definition, properties. Discrete random variables. 	 Interactive exposure Explanation Conversation Didactical demonstration 	

 Cumulative distribution function: definition, properties, examples. 	Interactive exposureExplanation
	Conversation
	Didactical
	demonstration
7. Probability density function: definition,	Interactive exposure
properties. Continuous random variables.	• Explanation
1 1	Conversation
	Didactical
	demonstration
8. Random vectors, joint distribution function, joint	Interactive exposure
density function. Marginal distributions and	• Explanation
marginal densities.	Conversation
marginar densities.	Didactical
	demonstration
0 Operations with continuous random variables.	
9. Operations with continuous random variables:	Interactive exposure Exploration
sum, multiplication, division.	ExplanationConversation
	• Didactical
	demonstration
10. Numerical characteristics of random variables:	• Interactive exposure
expectation, variance, standard deviation,	ExplanationConversation
moments, covariance, correlation coefficient.	
	• Didactical
	demonstration
11. Characteristic function, definition, properties.	• Interactive exposure
Applications.	• Explanation
	Conversation
	• Didactical
	demonstration
12. Sequences of random variables. Convergence	• Interactive exposure
types and connections between them.	• Explanation
	Conversation
	Didactical
	demonstration
13. Laws of large numbers. Weak law of large	• Interactive exposure
numbers. Markov, Chebyshev, Poisson and	• Explanation
Bernoulli theorems. Strong law of large	Conversation
numbers.	Didactical
	demonstration
14. Lindeberg condition and central limit theorem.	Interactive exposure
Moivre-Laplace theorem.	• Explanation
	Conversation
	Didactical
	demonstration
Bibliography	

Bibliography

1. AGRATINI, O., Capitole speciale de matematici, Lito., Univ. Babeş-Bolyai Cluj-Napoca, 1996.

2. BLAGA, P., RĂDULESCU, M., *Calculul probabilităților*, Lito., Univ. Babeş-Bolyai Cluj-Napoca, 1987.

- 3. BLAGA, P., *Calculul probabilităților și statistică matematică. Curs și culegere de probleme*, Vol. II, Lito.,Univ. Babeș-Bolyai Cluj-Napoca, 1994.
- 4. LISEI, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004.
- 5. LISEI, H., MICULA, S., SOOS, A., *Probability Theory through Problems and Applications*, Presa Universitară Clujeană, 2006.
- 6. SHELDON, R., A First Course in Probability, 8th edition, Pearson Prentice Hall, 2010.

3.2 Seminar	Teaching methods	Remarks
1. Euler's Gamma and Beta functions. Properties.	Explanation,	
Elements of combinatorics.	conversation,	
	examples.	
2. Probability calculus on a finite field.	Explanation,	
	conversation,	
	examples.	
3. Conditional probability. Independent events.	Explanation,	
Bayes formula.	conversation,	
	examples.	
4. Classical probabilistic models.	Explanation,	
	conversation,	
	examples.	
5. Geometric probability. Exercises.	Explanation,	
	conversation,	
	examples.	
6. Discrete random variables. Operations and	Explanation,	
exercises.	conversation,	
	examples.	
7. Continuous random variables. Operations and	Explanation,	
exercises.	conversation,	
	examples.	
8. Random vectors. Exercises.	Explanation,	
	conversation,	
	examples.	
9. Numerical characteristics of random variables.	Explanation,	
	conversation,	
	examples.	
10. Classical inequalities for numerical	Explanation,	
characteristics of random variables.	conversation,	
	examples.	
11. Characteristic function. Exercises.	Explanation,	
	conversation,	
	examples.	
12. Sequences of random variables. Exercises.	Explanation,	
	conversation,	
12.0	examples.	
13. Convergence of sequences of random	Explanation,	
variables.	conversation,	
	examples.	
14. Limit theorems. Applications.	Explanation,	
	conversation,	
	examples.	

Bibliography

- 1. AGRATINI, O., *Probabilități Culegere de probleme*, Lito., Univ. Babeş-Bolyai Cluj-Napoca, 1992.
- 2. BLAGA, P., *Calculul probabilităților-Culegere de probleme*, Lito., Univ. Babeș-Bolyai Cluj-Napoca, 1984.
- 3. BLAGA, P., *Calculul probabilităților și statistică matematică. Curs și culegere de probleme*, Vol. II, Lito., Univ. Babeș-Bolyai Cluj-Napoca, 1994.
- 4. LISEI, H., MICULA, S., SOOS, A., *Probability Theory through Problems and Applications*, Presa Universitară Clujeană, 2006.
- 5. SHELDON, R., A First Course in Probability, 8th edition, Pearson Prentice Hall, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of the course is important because it covers basic concepts and topics in this field.
- The course exists in the studying program of all major universities in Romania and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Know the basic principles in Probability Theory	Written exam.	80%
10.5 Seminar	20%		
10.6 Minimum perfor	mance standards 5 (from a scale of 1 to 10) at the	witten avon	•

• At least grade 5 (from a scale of 1 to 10) at the written exam

Date	Signature of course coordinator	Signature of seminar coordinator
18 April 2018	Prof. PhD. Agratini Octavian	Lect. PhD. Roșca Natalia
	Date of approval	Signature of the head of department

Prof. PhD.. Agratini Octavian