SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeș-Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science – Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics Computer Science

2. Information regarding the discipline

2.1 Name of the	Name of the discipline (en)			Data Structures and Algorithms				
(ro)								
2.2 Course coordinator		Lect. PhD. Marian Zsuzsanna						
2.3 Seminar coordinator			Le	Lect. PhD. Marian Zsuzsanna				
2.4. Year of	1	2.5	2	2 2.6. Type of C 2.7 Type of Compulsor				
study		Semester		evaluation discipline				
2.8 Code of the MLE5022								
discipline								

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					16
Preparation for seminars/labs, homework, papers, portfolios and essays					22
Tutorship					15
Evaluations					15
Other activities:					
275 (1: 1: 1 1 1 1		100			

3.7 Total individual study hours	108
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of programming
4.2. competencies	 Medium programming skills

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	te competencies acquired
Professional competencies	C4.1. Definition of concepts and basic principles of computer science, and their mathematical models and theories. C4.3. Identification of adequate models and methods for solving real problems
Pre	C4.5. Adoption of formal models in specific applications from different domains
ial	CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
Transversal competencies	CT3. Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees).
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction. Data structures. Abstract	- Exposure	
Data Types	- Description	
 Data abstractization and encapsulation 	- Examples	
Pseudocode conventions	- Didactical	
 Complexities 	demonstration	
2. Arrays. Iterators	- Exposure	
 Dynamic array 	- Description	
 Amortized analysis 	- Conversation	
·	- Didactical	

Interface of an iterator	demonstration
3. Linked Lists	- Exposure
Singly linked list: representation and	- Description
operations	- Conversation
Doubly linked list: representation and	- Didactical
operations	demonstration
 Iterator for linked lists 	- Case study
4. Linked Lists II	- Exposure
Sorted linked lists: representation and	- Description
operations	- Conversation
 Linked lists on arrays: representation 	- Didactical
and operations	demonstration
5. Abstract Data Types	- Exposure
ADT Set: description, domain,	- Description
interface and possible representations	- Conversation
ADT Map: description, domain,	- Didactical
interface and possible representations	demonstration
ADT Matrix: description, domain,	
interface and possible representations	
6. Binary Heap	- Exposure
 Definition, representations, specific 	- Description
operations	- Conversation
HeapSort	- Didactical
ADT List	demonstration
 Description, domain, interface and 	
possible representations	
possible representations	
7. ADT Stack	- Exposure
Description, domain, interface and	- Description
possible representations on arrays and	- Conversation
linked lists	- Didactical
ADT Queue	demonstration
Description, domain, interface and	- Case studies
possible representations on arrays,	
circular arrays and linked lists.	
Problems solved with stacks and queues	
8. ADT Deque	- Exposure
Description and possible	- Description
representations	- Conversation
ADT Priority Queue	- Didactical
Description, domain, interface and	demonstration
possible representations on arrays,	- Case studies
linked lists and heaps	
9. Hash Table	- Exposure
 Direct address tables 	- Description
 Hash tables: description, properties 	- Conversation
Collision resolution through separate	- Didactical
chaining	demonstration
10. Hash Table	- Exposure
Collision resolution through coalesced	- Description
	•

 hashing Collision resolution through open addressing Containers represented over hash tables 	ConversationDidactical demonstration
 11. Trees Concepts related to trees Applications of trees Binary Trees Description, properties Domain and interface of ADT Binary Tree Operations for ADT Binary Tree: search, add, remove elements Tree traversals: recursive/non recursive algorithms. 	 Exposure Description Conversation Didactical demonstration
 12. Binary Search Trees Description, properties Representation Operations: recursive and non-recursive algorithms Containers represented over binary search tables 13. Balanced Binary Search Trees 	 Exposure Description Conversation Didactical demonstration
14. Final Exam	 Exposure Description Conversation Didactical demonstration Final Exam

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.2 Seminar	Teaching methods	Remarks
		Seminar is structured as 2
		hour classes every second
		week.
1. ADT Bag with a generic elements.	- Exposure	
Representations and implementations on an	- Conversation	
array. Iterator for ADT Bag	- Examples	
	- Debate	
2. Complexities	- Exposure	
	- Examples	
	- Debate	
	- Conversation	
3. Sorted Multi Map – representation and	- Exposure	
implementation on a singly linked list.	- Examples	

	DebateConversation	
Bucket sort, Lexicographic sort, radix sort. Merging two singly linked lists	ExposureExamplesDebateConversation	
5. Written test and project theme allocation.	- Written test Tl	he test takes 1 hour
6. Hash tables. Collision resolution through coalesced chaining.	ExposureExamplesDebateConversation	
7. Binary Trees	ExposureExamplesDebateConversation	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures and algorithms courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of 	Written evaluation (in the last lecture): written exam	60%		
	applying the course concepts				
	• Realization of a project	Correctness of the	20%		
	 design, development 	documentation			
	and documentation of	(specifications, algorithms,			
	an application that uses	complexities) and			
	an ADT and a given	implementation			
	data structure as				
	representation for the				

	ADT. Project allocation will be done in Seminar 5. Respecting the deadlines for lab presentation		
10.6 Seminar	Written test from seminar 5.Project stage	Written test (70% from the seminar grade)	20%
	• 110jeet stage	Project stage (30% from seminar grade)	

10.6 Minimum performance standards

- Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.
- For participating at the written exam, a student must have at least 5 seminar attendances.
- For successfully passing the examination, a student must have at least 5 for the laboratory and as a final grade.

Date Signature of course coordinator Signature of seminar coordinator

24.04.2018 Lect. PhD. Marian Zsuzsanna Lect. PhD. Marian Zsuzsanna

Date of approval Signature of the head of department

Prof. PhD. Andreica Anca