SYLLABUS

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disciplin	e Geometry 2	2				
(ro)	Geometrie 2	Geometrie 2				
2.2 Course coordinator]	Lect. Dr. Iulian Simion			
2.3 Seminar coordinator]	Lect. Dr. Iulian Simion			
2.4 Year of study 1 2	2.5 Semester	2	2.6. Type of	VP	2.7 Type of	Compulsory
			evaluation		discipline	
2.8 Disciplinei code	ALE0015					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar	28
Time allotment:					hours
Learning using manual, course support,	bibli	ography, course notes			15
Additional documentation (in libraries,	on ele	ectronic platforms, field	d docu	imentation)	15
Preparation for seminars/labs, homework, papers, portfolios and essays				25	
Tutorship				10	
Evaluations				3	
Other activities:					1
3.7 Total individual study hours 69					
3.8 Total hours per semester 125					
3.9 Number of ECTS credits		6			

4. Prerequisites (if necessary)

1 `	57
4.1 curriculum	Basic knowledege in algebra and analysis
	A first course on analytic geometry
4.2 competencies	٨٢

5. Conditions (if necessary)

5.1 for the course	٨٢
5.2 for the seminar /lab	٦٨
activities	

6. Specific competencies acquired

of Spee	ine competencies acquired
ional	Systematic solving of problems
Professiona	Therdisciplinary approach and thinking
Pr	Nodeling and abstraction
competencies	
ncies	Aptitude of moving from abstract theory to concrete problems
peter	Tritical thinking
com	Discussing obtained knowledege
ersa	Applying obtained knowledge
Transversal competencies	
E	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of	Basic notions and methods în the context of affine geometry
the discipline	
7.2 Specific objective of	Classification results and structural results for affine morphism
the discipline	linking abstract thinking with practical proplems

8. Content

8.1 Course	Teaching methods	Remarks
Affine spaces	Exposition, proofs,	One lecture
	examples	
Coordinates in affine spaces	Exposition, proofs,	Two lecture
	examples	
Affine hulls	Exposition, proofs,	One lecture
	examples	
Convex sets	Exposition, proofs,	Two lectures
	examples	
Affine morphisms	Exposition, proofs,	Eight lectures
- Structural results	examples	
- Projections and reflections		
- Classification results in dimension 2 and 3		
- Affine morphism in dim 2 and complex		
numbers		
- Affine transformations and quaternions		
- Finite groups of isometries in dim 2 and 3		

Bibliography

[1] D. Andrica, Geometrie, Cluj-Napoca, 2017

[2] P.A. Blaga, Geometrie și grafică pe calculator – note de curs, Cluj-Napoca, 2016.

[3] M. Craioveanu, I.D. Albu, Geometrie afină și euclidiană, Timisoara, 1982.

[4] GH. Galbură, F. Radó, Geometrie, Bucuresti, 1979.

[5] P. Michele, Géométrie - notes de cours, Lausanne, 2016.

[6] A. Paffenholz, Polyhedral Geometry and Linear Optimization, Darmstadt, 2013.

[7] C.S. Pintea, Geometrie afină - note de curs, Cluj-Napoca, 2017.

[8] I.P. Popescu, Geometrie afină și euclidiană, Timisoara, 1984.

[9] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie, Cluj-Napoca, 1979.

[10] I. Simion, Geometry 2 – Lecture notes, 2018.

[11] M. Troyanov, Cours de géométrie, Lausanne, 2011.

[11] III. Hoyanov, cours de geometrie, Lausanie,	_ 011.	
8.2 Seminar	Teaching methods	Remarks
Affine spaces	Dialog, problem	One tutorial
	solving	
Coordinates in affine spaces	Dialog, problem	Two tutorials
	solving	
Affine hulls	Dialog, problem	One tutorial
	solving	
Convex sets	Dialog, problem	Two tutorials
	solving	
Affine morphisms	Dialog, problem	Eight tutorials
- Structural results	solving	
- Projections and reflections		
- Classification results in dimension 2		
- Affine morphism în dim 2 and complex		
numbers		
- Classification results in dimension 3		
- Affine transformations and quaternions		
- Finite groups of isometries in dim 2 and 3		
Dibliggenerity		

Bibliography

[1] D. Andrica, Geometrie, Cluj-Napoca, 2017

[2] P.A. Blaga, Geometrie și grafică pe calculator – note de curs, Cluj-Napoca, 2016.

[3] M. Craioveanu, I.D. Albu, Geometrie afină și euclidiană, Timisoara, 1982.

[4] GH. Galbură, F. Radó, Geometrie, Bucuresti, 1979.

[5] C.S. Pintea, Geometrie afină - note de curs, Cluj-Napoca, 2017.

[6] I.P. Popescu, Geometrie afină și euclidiană, Timisoara, 1984.

[7] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie, Cluj-Napoca, 1979.

[8] I. Simion, Geometry 2 – Lecture notes, 2018.

[9] M. Troyanov, Cours de géométrie, Lausanne, 2011.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The material of this course serves other courses r_{r}
- -, for example: affine transformations in 2D and 3D are necessary examples for a group theory course, quaternions are also discussed in the context of rotations
- Building on a previous geometry course, classification results are presented

The link to practical problem is made via different mini-topics which are presented from the perspective of the theory at hand

- convex hulls, Voronoi cells, quaternions

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	Critical grasp of the	Two written partial exams	each 40%	
	learned material, ability	at the middle and end of		
	to use what was learned	the semester		
10.5 Seminar	Active participation at	Dialog, problem solving,	20%	
	the seminars, ability to	self study		
	use the methods learned			
10.6 Minimum performance standards				
Л	Attendance of tutorials			
٨٢	At least grade 5 for each of the partial exams			

Date	Signature of course coordinator	Signature of seminar coordinator
15. April 2018	Lect. Dr. Iulian Simion	Lect. Dr. Iulian Simion

Date of approval

Signature of the head of department

.....

Prof. Dr. Octavian Agratini